Skip to main content

Function of the Turbinates: Nasal Cycle

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders

Abstract

Respiratory function of the nose is to sufficiently condition the respirated air which is maintained by supplying the mucosa with thermal energy and fluid for humidification. This is supplied by the blood circulation and in coherence with the nasal cycle (Grützenmacher et al. Am J Rhinol 1:53–57, 2005). The erectile tissue enables the turbinates to cyclically congest and decongest. One side of the nose is in its working phase conditioning the air, with an unimpeded air passage and increased turbulence. At the same time, the contralateral side is in its resting phase, saving energy and moisture by high airway resistant low turbulence (Lang et al. Laryngoscope 113(2):284–289, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Battle E. Einflüsse der Temperatur auf den Nasenwiderstand. Dissertation, Zürich; 1989.

    Google Scholar 

  • Baumann A, Masing H. Über den Einfluß körperlicher Arbeit auf den Nasenwiderstand. Z Laryngol Rhinol Otol. 1970;49:264–70.

    PubMed  CAS  Google Scholar 

  • Block RA, Arnott DP, Quigley B. Unilateral nostril breathing influences lateralized cognitive performance. Brain Cogn. 1989;9:181–90.

    Article  PubMed  CAS  Google Scholar 

  • Cole P. Upper respiratory airflow. In: Proctor DF, Andersen IB, editors. The nose. Amsterdam/New York: Elsevier; 1982.

    Google Scholar 

  • Cole P, Haight JS. Posture and nasal patency. Am Rev Respir Dis. 1984;129:351–4.

    PubMed  CAS  Google Scholar 

  • Cole P, Haight JS. Posture and the nasal cycle. Ann Otol Rhinol Laryngol. 1986;95(3 Pt 1):233–7.

    PubMed  CAS  Google Scholar 

  • Cole P, Niinimaa V, Mintz S, Silverman F. Work of nasal breathing: measurement of each nostril independently using a split mask. Acta Otolaryngol. 1979;88:148–54.

    Article  PubMed  CAS  Google Scholar 

  • Cole P, Forsyth R, Haight JS. Effects of cold air and exercise on nasal patency. Ann Otol Rhinol Laryngol. 1983a;92:196–8.

    PubMed  CAS  Google Scholar 

  • Cole P, Haight JS, Cooper PW, Kassel EE. A computed tomographic study of nasal mucosa: effects of vasoactive substances. J Otolaryngol. 1983b;12:58–60.

    PubMed  CAS  Google Scholar 

  • Cole P, Haight JS, Naito K, Kucharczyk W. Magnetic resonance imaging of the nasal airways. Am J Rhinol. 1989;3:63–7.

    Article  Google Scholar 

  • Dallimore NS, Eccles R. Changes in human nasal resistance associated with exercise, hyperventilation and rebreathing. Acta Otolaryngol. 1977;84:416–21.

    Article  PubMed  CAS  Google Scholar 

  • Doyle WJ, van Cauwenberge PB. Relationship between nasal patency and clearance. Rhinology. 1987;25(3):167–79.

    PubMed  CAS  Google Scholar 

  • Drettner B. Vascular reaction of the human nasal mucosa on exposure to cold. Acta Otolaryngol Suppl. 1961;161:1–109.

    Google Scholar 

  • Drettner B. Die Ventilation der Nase und der Nebenhöhlen. Z Laryngol Rhinol. 1967;46:159–72.

    CAS  Google Scholar 

  • Eccles R. The central rhythm of the nasal cycle. Acta Otolaryngol. 1978;86:464–8.

    PubMed  CAS  Google Scholar 

  • Eccles R. Neurological and pharmacological considerations. In: Proctor DF, Andersen IB, editors. The nose. Amsterdam/New York: Elsevier; 1982.

    Google Scholar 

  • Eccles R. Nasal airflow in health and disease. Acta Otolaryngol. 2000;120:580–95.

    Article  PubMed  CAS  Google Scholar 

  • Eccles R, Reilly M, Eccles KS. Changes in the amplitude of the nasal cycle associated with symptoms of acute respiratory tract infection. Acta Otolaryngol. 1996;116:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Fisher EW, Liu M, Lund VJ. The nasal cycle after deprivation of airflow: a study of laryngectomy patients using acoustic rhinometry. Acta Otolaryngol. 1994;114(4):443–6.

    Article  PubMed  CAS  Google Scholar 

  • Gallego AJ, Cavallari FE, Valera FC, Demarco RC, Anselmo-Lima WT. Study of nasal cycles in children by acoustic rhinometry. Am J Rhinol. 2006;20:560–2.

    Article  PubMed  Google Scholar 

  • Gilbert AN, Rosenwasser AM. Biological rhythmicity of nasal airway patency: a re-examination of the ‘nasal cycle’. Acta Otolaryngol. 1987;104(1–2):180–6.

    Article  PubMed  CAS  Google Scholar 

  • Gotlib T, Samoliński B, Grzanka A. Bilateral nasal allergen provocation monitored with acoustic rhinometry. Assessment of both nasal passages and the side reacting with greater congestion: relation to the nasal cycle. Clin Exp Allergy. 2005;35(3):313–8.

    Article  PubMed  CAS  Google Scholar 

  • Grützenmacher S, Lang C, Mlynski R, Mlynski B, Mlynski G. Long-term rhinoflowmetry: a new method for functional rhinologic diagnostics. Am J Rhinol. 2005;19(1):53–7.

    PubMed  Google Scholar 

  • Gungor A, Moinuddin R, Nelson RH, Corey JP. Detection of the nasal cycle with acoustic rhinometry: techniques and applications. Otolaryngol Head Neck Surg. 1999;120(2):238–47.

    Article  PubMed  CAS  Google Scholar 

  • Haight JS, Cole P. Reciprocating nasal airflow resistances. Acta Otolaryngol. 1984;97:93–8.

    Article  PubMed  CAS  Google Scholar 

  • Haight JS, Cole P. Unilateral nasal resistance and asymmetrical body pressure. J Otolaryngol Suppl. 1986;16:1–31.

    PubMed  CAS  Google Scholar 

  • Hanif J, Jawad SS, Eccles R. The nasal cycle in health and disease. Clin Otolaryngol. 2000;25:461–7.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kern EB. The human nasal cycle. Mayo Clin Proc. 1977;52:28–34.

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Kern EB. The effect of breath holding, hyperventilation, and exercise on nasal resistance. Rhinology. 1978;16:243–9.

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Saito Y. Postural variations in nasal resistance and symptomatology in allergic rhinitis. Acta Otolaryngol. 1979;88:268–72.

    Article  PubMed  CAS  Google Scholar 

  • Heetderks DR. Observations on the reaction of normal nasal mucous membrane. Am J Med Sci. 1927;664:231–44.

    Article  Google Scholar 

  • Ingels KJ, Meeuwsen F, van Strien HL, Graamans K, Huizing EH. Ciliary beat frequency and the nasal cycle. Eur Arch Otorhinolaryngol. 1990;248(2):123–6.

    Article  PubMed  CAS  Google Scholar 

  • Jackson RT. Pharmacologic responsiveness of the nasal mucosa. Ann Otol Rhinol Laryngol. 1970;79:461–7.

    PubMed  CAS  Google Scholar 

  • Kayser R. Die exacte Messung der Luftdurchgängigkeit der Nase. Arch Laryngol. 1895;3:101–210.

    Google Scholar 

  • Keerl R, Weber R, Huppmann A. Darstellung zeitabhängiger Veränderungen der Nasenschleimhaut unter Einsatz modernster Morphsoftware. Laryngorhinootologie. 1995;74:413–8.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy DW, Zinreich SJ, Rosenbaum AE, Kumar AJ, Johns ME. Physiologic mucosal changes within the nose and ethmoid sinus: imaging of the nasal cycle by MRI. Laryngoscope. 1988;98:928–33.

    Article  PubMed  CAS  Google Scholar 

  • Kern EB. The noncycle nose. Rhinology. 1981;19:59–74.

    PubMed  CAS  Google Scholar 

  • Keuning J. On the nasal cycle. Int Rhinol. 1968;6:99–136.

    Google Scholar 

  • Koch U, Pau HW. Beziehung zwischen Nasenwegswiderstand und Tubenfunktion in Abhängigkeit von der Tageszeit. Arch OtoRhino-Laryngol. 1982;235:583–6.

    Article  Google Scholar 

  • Lang C, Grützenmacher S, Mlynski B, Plontke S, Mlynski G. Investigating the nasal cycle using endoscopy, rhinoresistometry, and acoustic rhinometry. Laryngoscope. 2003;113(2):284–9.

    Article  PubMed  Google Scholar 

  • Lenz H, Theelen W, Eichler J. Untersuchungen zum Nasenzyklus mit Hilfe rhinomanometrischer Messungen. HNO. 1995;33:58–61.

    Google Scholar 

  • Maran AG, Lund VJ. Clinical rhinology. Stuttgart/New York: Thieme; 1990.

    Google Scholar 

  • Masing H, Wolf G. Der Nachweis des Nasenmuschelzyklus mit Hilfe des Röntgenschichtbildverfahrens. Z Laryng Rhinol. 1969;48:684–92.

    CAS  Google Scholar 

  • Melon J. Contribution a l’etude de l’activite secretoire de la muqueuse nasale. Acta Otorhinolaryngol Belg. 1968;22:1–244.

    CAS  Google Scholar 

  • Mlynski G, Grützenmacher S, Mlynski B, Lang C. Aerodynamik der Nase – Physiologie und Pathophysiologie. In: Ganz H, Iro H, Hrsg. HNO Praxis heute, vol. 20. Heidelberg: Springer; 2000. p. 61–81.

    Google Scholar 

  • Pirilä T, Talvisara A, Alho OP, Oja H. Physiological fluctuations in nasal resistance may interfere with nasal monitoring in the nasal provocation test. Acta Otolaryngol. 1997;117(4):596–60.

    Article  PubMed  Google Scholar 

  • Rao S, Potdar A. Nasal airflow with body in various positions. J Appl Physiol. 1970;28:162–5.

    Article  PubMed  CAS  Google Scholar 

  • Richerson HB, Seebohm PM. Nasal airway response to exercise. J Allergy. 1968;41(5):269–84.

    Article  PubMed  CAS  Google Scholar 

  • Rundcrantz H. Postural variations of nasal patency. Acta Otolaryngol. 1969;68:435–43.

    Article  PubMed  CAS  Google Scholar 

  • Salman SD, Proctor DF, Swift DL, Evering SA. Nasal resistance: a description of a method and effect of temperature and humidity changes. Ann Otol Rhinol Laryngol. 1971;80:736–43.

    PubMed  CAS  Google Scholar 

  • Schlegel C, Gammert C. Verhalten des Nasenatemwiderstandes in Kälte und Wärme. Otorhinolaryngol Nova. 1991;1:189–93.

    Google Scholar 

  • Shannahoff-Khalsa DS, Boyle MR, Buebel ME. The effects of unilateral forced nostril breathing on cognition. Int J Neurosci. 1991;57:239–49.

    Article  PubMed  CAS  Google Scholar 

  • Sipila JI, Suonpaa JT, Salmivalli AJ, Laippala P. The effect of the nasal cycle on the interpretation of rhinomanometric results in a nasal provocation test. Am J Rhinol. 1990;4:179–84.

    Article  Google Scholar 

  • Soane RJ, Carney AS, Jones NS, Frier M, Perkins AC, Davis SS, Illum L. The effect of the nasal cycle on mucociliary clearance. Clin Otolaryngol Allied Sci. 2001;26(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  • Stoksted P. The physiologic cycle of the nose under normal and pathologic conditions. Acta Otolaryngol. 1952;42:175–9.

    Article  PubMed  CAS  Google Scholar 

  • Stoksted P. Rhinomanometric measurements for determination of the nasal cycle. Acta Otolaryngol (Stockh). 1953;109(Suppl):159–75.

    Article  CAS  Google Scholar 

  • Stoksted P, Nielsen JZ. Rhinomanometric measurements of the nasal passage. Ann Otol Rhinol Laryngol. 1957;66:187–97.

    PubMed  CAS  Google Scholar 

  • Takagi Y, Proctor DF, Salman S, Evering S. Effects of cold air and carbon dioxide on nasal air flow resistance. Ann Otol Rhinol Laryngol. 1969;74:40–9.

    Google Scholar 

  • van Cauwenberge PB. Variations in nasal resistance in young children. Acta Otorhinolaryngol Belg. 1980;34(2):145–56.

    PubMed  Google Scholar 

  • van Cauwenberge PB, Deleye L. Nasal cycle in children. Arch Otolaryngol. 1984;110(2):108–10.

    Article  PubMed  Google Scholar 

  • van Cauwenberge PB, de Schynkel K, Kluyskens PM. Clinical use of rhinomanometry in children. Int J Pediatr Otorhinolaryngol. 1984;8(2):163–75.

    Article  PubMed  Google Scholar 

  • Webber RL, Jeffcoat MK. MR demonstration of the nasal cycle in the beagle dog. J Comput Assist Tomogr. 1987;11:869–71.

    Article  PubMed  CAS  Google Scholar 

  • Weber R, Keerl R. Einsatz moderner Bild-Datenverarbeitung in der klinisch-rhinologischen Forschung. Eur Arch Otorhinolaryngol. 1996;I(Suppl):271–96.

    Google Scholar 

  • Werntz DA, Bickford RG, Bloom FE. Alternating cerebral hemispheric activity and teh lateralization of autonomic nervous function. Hum Neurobiol. 1983;2:39–43.

    PubMed  CAS  Google Scholar 

  • Zinreich SJ, Kennedy DW, Kumar AJ, Rosenbaum AE, Arrington JA, Johns ME. MR imaging of normal nasal cycle: comparison with sinus pathology. J Comput Assist Tomogr. 1988;12(6):1014–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer K. Weber MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, R.K., Werner, J.A. (2013). Function of the Turbinates: Nasal Cycle. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics