Skip to main content

Cilia, Ciliary Movement, and Mucociliary Transport

  • Chapter
  • First Online:

Abstract

Cilia are extensions of the apical membranes. The cilium itself is characterized by a 9 + 2 axonemal structure. An active, coordinated ciliary beating is essential for mucociliary transport. Ciliary beating depends on the ATPase activity in the dynein arms and is characterized by a specific beating pattern. In healthy persons, 95 % of the cilia are ultrastructurally completely normal. Ciliary abnormalities can be the results of external factors (secondary ciliary dyskinesia) or inherited (primary ciliary dyskinesia). Ciliary function and structure are organized at different levels from the individual cilia, over interciliary and intercellular interaction, to the macroscopic level of the ciliated tapestry and mucociliary transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzelius BA. The immotile-cilia syndrome: a microtubule-associated defect. CRC Crit Rev Biochem. 1985;19:63–87.

    Article  PubMed  CAS  Google Scholar 

  • Barbato A, Frischer T, Kuehni CE, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J. 2009;34:1264–76.

    Article  PubMed  CAS  Google Scholar 

  • Becker-Heck A, Zohn IE, Okabe N, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 2011;43:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Castleman VH, Romio L, Chodhari R, Hirst RA, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84:197–209.

    Article  PubMed  CAS  Google Scholar 

  • Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol. 2003;112:518–24.

    Article  PubMed  Google Scholar 

  • Ferkol TW, Leigh MW. Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr. 2012;160(3):366–71.

    Article  PubMed  Google Scholar 

  • Hornef N, Olbrich H, Horvath J, Zariwala MA, et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med. 2006;174:120–6.

    Article  PubMed  CAS  Google Scholar 

  • Ingels K, Kortmann M, Nijziel M, et al. Factors influencing ciliary beat measurements. Rhinology. 1991;29:19–26.

    Google Scholar 

  • Jafek BW. Ultrastructure of human nasal mucosa. Laryngoscope. 1983;93:1576–99.

    Article  PubMed  CAS  Google Scholar 

  • Jorissen M. Correlations among mucociliary transport, ciliary function and ciliary structure. Am J Rhinol. 1998;12:53–8.

    Article  PubMed  CAS  Google Scholar 

  • Jorissen M, Willems T. The secondary nature of ciliary (dis)orientation in secondary and primary ciliary dyskinesia. Acta Otolaryngol. 2004;124:527–31.

    Article  PubMed  Google Scholar 

  • Jorissen M, De Brouwer J, Bessems A, Cassiman JJ. Quantitation of ciliary beat frequency by computerized microscope photometry – a preliminary study on suspension cultures of human nasal epithelia showing spontaneous ciliogenesis in vitro. Leitz Sci Tech Info. 1992;10:88–93.

    Google Scholar 

  • Kim CS, Jeon SY, Min YG, et al. Effects of beta-toxin of Staphylococcus aureus on ciliary activity of nasal epithelial cells. Laryngoscope. 2000;110:2085–8.

    Article  PubMed  CAS  Google Scholar 

  • King SM. Axonemal dyneins winch the cilium. Nat Struct Mol Biol. 2010;17:673–4.

    Article  PubMed  CAS  Google Scholar 

  • Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002;109:571–7.

    PubMed  CAS  Google Scholar 

  • Knowles MR, Leigh MW, Carson JL, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67:433–41.

    Article  PubMed  Google Scholar 

  • Loges NT, Olbrich H, Fenske L, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet. 2008;83:547–58.

    Article  PubMed  CAS  Google Scholar 

  • Mallants R, Jorissen M, Augustijns P. Beneficial effect of antibiotics on ciliary beat frequency of human nasal epithelial cells exposed to bacterial toxins. J Pharm Pharmacol. 2008;60:437–43.

    Article  Google Scholar 

  • Mallik R, Carter BC, Lex SA, et al. Cytoplasmic dynein functions as a gear in response to load. Nature. 2004;427:649–52.

    Article  PubMed  CAS  Google Scholar 

  • Mazor M, Alkrinawi S, Chalifa-Caspi V, et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011;88:599–607.

    Article  PubMed  CAS  Google Scholar 

  • Melville GN, Horstmann G, Iravani J. Adrenergic compounds and the respiratory tract. A physiological and electron-microscopical study. Respiration. 1976;33:261–9.

    Article  PubMed  CAS  Google Scholar 

  • Merkus F, Verhoef J, Schipper N, et al. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29:13–38.

    Article  PubMed  Google Scholar 

  • Pazour GJ, Agrin N, Walker BL, et al. Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet. 2006;43:62–73.

    Article  PubMed  CAS  Google Scholar 

  • Rautiainen M, Collan Y, Nuutinen J. A method for measuring the orientation (beat direction) of respiratory cilia. Arch Otorhinolaryngol. 1986;243:265–8.

    Article  PubMed  CAS  Google Scholar 

  • Rautiainen M, Collan Y, Nuutinen J, et al. Ciliary orientation in the ‘immotile cilia’ syndrome. Eur Arch Otorhinolaryngol. 1990;247:100–3.

    Article  PubMed  CAS  Google Scholar 

  • Rayner CF, Rutman A, Dewar A, et al. Ciliary disorientation alone as a cause of primary ciliary dyskinesia syndrome. Am J Respir Crit Care Med. 1996;153:1123–9.

    Article  PubMed  CAS  Google Scholar 

  • Rhodin JAG. Ultrastructure and function of human tracheal mucosa. Am Rev Respir Dis. 1966;93:1–15.

    PubMed  Google Scholar 

  • Roberts AJ, Numata N, Walker ML, et al. AAA + Ring and linker swing mechanism in the dynein motor. Cell. 2009;136:485–95.

    Article  PubMed  CAS  Google Scholar 

  • Sackner MA, Epstein S, Wanner A. Effect of beta-adrenergic agonists aerosolized by freon propellant on tracheal mucous velocity and cardiac output. Chest. 1976;69:593–8.

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Kamiya R. Functional recombination of outer dynein arms with outer arm-missing flagellar axonemes of a Chlamydomonas mutant. J Cell Sci. 1989;92:77–83.

    Google Scholar 

  • Sanderson MJ, Chow I, Dirksen ER. Intercellular communication between ciliated cells in culture. Am J Physiol. 1988;254:C63–74.

    PubMed  CAS  Google Scholar 

  • Satir P. How cilia move. Sci Am. 1974;231:44–52.

    PubMed  CAS  Google Scholar 

  • Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377–400.

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Salathe M. Ciliary beat co-ordination by calcium. Biol Cell. 2011;103:159–69.

    Article  PubMed  CAS  Google Scholar 

  • van de Donk HJ, Zuidema J, Merkus FW. The influence of the pH and osmotic pressure upon tracheal ciliary beat frequency as determined with a new photo-electric registration device. Rhinology. 1980;18:93–104.

    PubMed  Google Scholar 

  • Verdugo P, Johnson NT, Tam PY. Beta-Adrenergic stimulation of respiratory ciliary activity. J Appl Physiol. 1980;48:868–71.

    PubMed  CAS  Google Scholar 

  • Wong LB, Miller IF, Yeates DB. Nature of the mammalian ciliary metachronal wave. J Appl Physiol. 1993;75:458–67.

    PubMed  CAS  Google Scholar 

  • Wood RE, Wanner A, Hirsch J, Farrell PM. Tracheal mucociliary transport in patients with cystic fibrosis and its stimulation by terbutaline. Am Rev Respir Dis. 1975;111:733–8.

    PubMed  CAS  Google Scholar 

  • Yun YS, Min YG, Rhee CS, et al. Effects of alpha-toxin of Staphylococcus aureus on the ciliary activity and ultrastructure of human nasal ciliated epithelial cells. Laryngoscope. 1999;109:2021–4.

    Article  PubMed  CAS  Google Scholar 

  • Zariwala MA, Leigh MW, Ceppa F, et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med. 2006;174:858–66.

    Article  PubMed  CAS  Google Scholar 

  • Zariwala MA, Omran H, Ferkol TW. The emerging genetics of primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8:430–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Jorissen MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jorissen, M., Jaspers, M. (2013). Cilia, Ciliary Movement, and Mucociliary Transport. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics