Skip to main content

Mucus, Goblet Cell, Submucosal Gland

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders

Abstract

Airway mucus blankets all mucosal surfaces, providing a physicochemical barrier that protects underlying epithelium against bacteria, viruses, and inhaled particles and gases. Mucus maintains airway hydration and plays an important role in the innate immune system by trapping foreign and endogenous substances, facilitating clearance by mucociliary activity. Mucus also has antioxidant, antiprotease, and antimicrobial functions. Composed of water, ions, serum protein exudates, epithelial secretions, and glandular and goblet cell products, mucus contains various defensive components such as glycoproteins (mucins), antibodies, defensin, lysozyme, and lactoferrin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-1:

Activated protein-1

AR:

Allergic rhinitis

AZM:

Azithromycin

CAM:

Clarithromycin

CF:

Cystic fibrosis

CREB:

cAMP response element binding protein

CRS:

Chronic rhinosinusitis

cysLTs:

Cysteinyl leukotrienes

EGFR:

Epidermal growth factor receptor

EM:

Erythromycin

Foxa2:

Forkhead box a2

IL:

Interleukin

NF-κB:

Nuclear factor κ-B

RA:

Retinoic acid

STAT6:

Signal transducer and activator of transcription 6

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

References

  • Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365:689–98.

    PubMed  CAS  Google Scholar 

  • Ali MS. Nasosinus mucin expression in normal and inflammatory conditions. Curr Opin Allergy Clin Immunol. 2009;9:10–5.

    CAS  Google Scholar 

  • Ali MS, Pearson JP. Upper airway mucin gene expression: a review. Laryngoscope. 2007;117:932–8.

    PubMed  CAS  Google Scholar 

  • Ali MS, Wilson JA, Bennett M, et al. Mucin gene expression in nasal polyp. Acta Otolaryngol. 2005;125:618–24.

    PubMed  CAS  Google Scholar 

  • Barbier D, Garcia-Verdugo I, Pothlichet J, et al. Influenza A induces the major secreted airway mucin MUC5AC in protease-EGFR-ERK-SP1 dependent pathway. Am J Respir Cell Mol Biol. 2012. doi:10.1165/rcmb.2011-0405OC.

    PubMed  Google Scholar 

  • Beum PV, Basma H, Bastola DR, et al. Mucin biosynthesis upregulation of core 2 beta 1.6 N-acetylglucosaminyltransferase by retinoic acid and Th2 cytokines in a human airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2005;288:L116–24.

    PubMed  CAS  Google Scholar 

  • Burgel PR, Lazarus SC, Tam DC, et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor activation. J Immunol. 2001;167:5948–54.

    PubMed  CAS  Google Scholar 

  • Carnoy C, Ramphal R, Scharfman A, et al. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 1991;9:323–34.

    Google Scholar 

  • Cervin A, Wallwork B. Macrolide therapy of chronic rhinosinusitis. Rhinology. 2007;45:259–67.

    PubMed  Google Scholar 

  • Chokki M, Yamamura S, Eguchi H, et al. Human airway trypsin-like protease increases mucin gene expression in airway epithelial cells. Am J Respir Cell Mol Biol. 2004;30:470–8.

    PubMed  CAS  Google Scholar 

  • Cohn L, Homer RJ, Marinov A, et al. Th2-induced airway mucus production is dependent on IL-4R-alpha, but not on eosinophils. J Immunol. 1999;162:6178–83.

    PubMed  CAS  Google Scholar 

  • Curran DR, Cohn L. Advances in mucous cell metaplasia; a plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol. 2010;42:268–75.

    PubMed  CAS  Google Scholar 

  • Davis CW. Goblet cells: physiology and pharmacology. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel: Birkhauser; 1997.

    Google Scholar 

  • Davis CW, Dickey BF. Regulated airway goblet cell mucin secretion. Annu Rev Physiol. 2008;70:487–512.

    PubMed  CAS  Google Scholar 

  • Delmotte P, Degroote S, Lafitte JJ. Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis X epitopes in the human bronchial mucosa. J Biol Chem. 2002;277:424–31.

    PubMed  CAS  Google Scholar 

  • Deshmukh HS, Case LM, Wesselkamper SC, et al. Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med. 2005;171:305–11.

    PubMed  Google Scholar 

  • Deshmukh HS, Shaver C, Case LM. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. Am J Respir Cell Mol Biol. 2008;38:446–54.

    PubMed  CAS  Google Scholar 

  • Donaldson SH, Bennett WD, Zeman KL, et al. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med. 2006;19:241–50.

    Google Scholar 

  • Evans CM, Koo JS. Airway mucus: the good, the bad, the sticky. Pharmacol Ther. 2009;121:332–48.

    PubMed  CAS  Google Scholar 

  • Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The pulmozyme study group. N Engl J Med. 1994;331:637–42.

    PubMed  CAS  Google Scholar 

  • Fung DCK, Rogers DF. Airway submucosal glands: physiology and pharmacology. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel: Birkhauser; 1997.

    Google Scholar 

  • Greiner AN, Meltzer EO. Pharmacologic rationale for treating allergic and nonallergic rhinitis. J Allergy Clin Immunol. 2006;118:985–98.

    PubMed  CAS  Google Scholar 

  • Haruna S, Shimada C, Ozawa M, et al. A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology. 2009;47:66–71.

    PubMed  Google Scholar 

  • Hashimoto K, Graham BS, Ho SB, et al. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5. Am J Respir Crit Care Med. 2004;170:306–12.

    PubMed  Google Scholar 

  • Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–57.

    PubMed  CAS  Google Scholar 

  • Hewson CA, Haas JJ, Bartlett NW, et al. Rhinovirus induces MUC5AC in human infection model and in vitro via NF-kB and EGFR pathways. Eur Respir J. 2010;36:1425–35.

    PubMed  CAS  Google Scholar 

  • Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Oshima T, Furukawa M, et al. Restoration of the mucociliary clearance of the maxillary sinus after endoscopic sinus surgery. J Allergy Clin Immunol. 1997;99:48–52.

    PubMed  CAS  Google Scholar 

  • Jaffe A, Francis J, Rosenthal M, et al. Long term-azithromycin may improve lung function in children with cystic fibrosis. Lancet. 1998;351:420.

    PubMed  CAS  Google Scholar 

  • Kim KC, Lillehoj EP. MUC1 mucin: a peacemaker in the lung. Am J Respir Cell Mol Biol. 2008;39:644–7.

    PubMed  CAS  Google Scholar 

  • Kim HJ, Ryu JH, Kim CH, et al. The role of Nox4 in oxidative stress-induced MUC5AC overexpression in human airway epithelial cells. Am J Respir Cell Mol Biol. 2008;39:598–609.

    PubMed  CAS  Google Scholar 

  • Koo JS, Yoon JH, Gray T, Norford D, Jetten AM, Nettesheim P. Restoration of the mucous phenotype by retinoic acid in retinoid-deficient human bronchial cell cultures: changes in mucin gene expression. Am J Respir Cell Mol Biol. 1999;20:43–52.

    PubMed  CAS  Google Scholar 

  • Kouzaki H, Iijima K, Kobayashi T, et al. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol. 2011;186:4375–87.

    PubMed  CAS  Google Scholar 

  • Krivan HC, Ginsburg V, Roberts DD. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialoGM1) and gangliotriaosylceramide (asialoGM2). Arch Biochem Biophys. 1988;260:493–6.

    PubMed  CAS  Google Scholar 

  • Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157:1829–32.

    PubMed  CAS  Google Scholar 

  • Kuperman DA, Huang X, Koth LL, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8:885–9.

    PubMed  CAS  Google Scholar 

  • Lamblin G, Lhermitte M, Klein A, et al. The carbohydrate diversity of human respiratory mucins: a protection of the underlying mucosa? Am Rev Respir Dis. 1991;144:S19–24.

    PubMed  CAS  Google Scholar 

  • Li R, Meng Z. Effects of SO2 derivatives on expressions of MUC5AC and IL-13 in human bronchial epithelial cells. Arch Toxicol. 2007;81:867–74.

    PubMed  CAS  Google Scholar 

  • Li Y, Martin LD, Spizz G, et al. MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J Biol Chem. 2001;276:40982–90.

    PubMed  CAS  Google Scholar 

  • Lillehoj EP, Kim BT, Kim KC. Identification of Pseudomonas aeruginosa flagellin as an adhesion for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol. 2002;282:L751–6.

    PubMed  CAS  Google Scholar 

  • Linden SK, Sutton P, Karlsson NG, et al. Mucins in the mucosal barrier to infection. Immunology. 2008;1:183–97.

    CAS  Google Scholar 

  • Lu W, Hisamatsu A, Koga T, et al. Cutting edge: enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. J Immunol. 2006;176:3890–4.

    PubMed  CAS  Google Scholar 

  • Mainz JG, Schiller I, Ritschel C, et al. Sinonasal inhalation of dornase alfa in CF: a double-blinded placebo-controlled cross-over pilot trial. Auris Nasus Larynx. 2011;38:220–7.

    PubMed  Google Scholar 

  • Majima Y, Hirata K, Takeuchi K, et al. Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis. 1990;141:79–83.

    PubMed  CAS  Google Scholar 

  • Majima Y, Masuda S, Sakakura Y. Quantitative study of nasal secretory cells in normal subjects and patients with chronic sinusitis. Laryngoscope. 1997;107:1515–8.

    PubMed  CAS  Google Scholar 

  • Majima Y, Kurono Y, Hirakawa K, et al. Efficacy of combined treatment with S-carboxymethylcysteine (carbocisteine) and clarithromycin in chronic rhinosinusitis patients without nasal polyp or with small nasal polyp. Auris Nasus Larynx. 2012;39:38–47.

    PubMed  Google Scholar 

  • Martinez-Antón A, Debolos C, Garrido M, et al. Mucin genes have different expression patterns in healthy and diseased upper airway mucosa. Clin Exp Allergy. 2006a;36:448–57.

    PubMed  CAS  Google Scholar 

  • Martinez-Antón A, Roca-Ferrer J, Mullol J. Mucin gene expression in rhinitis syndrome. Curr Allergy Asthma Rep. 2006b;6:189–97.

    PubMed  Google Scholar 

  • Min YG, Yun YS, Song BH, et al. Recovery of nasal physiology after functional endoscopic sinus surgery: olfaction and mucociliary transport. ORL J Otorhinolaryngol Relat Spec. 1995;57:264–8.

    PubMed  CAS  Google Scholar 

  • Moniaux N, Escande F, Batra SK, et al. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur J Biochem. 2000;267:4536–44.

    PubMed  CAS  Google Scholar 

  • Nadziejko C, Finkelstein I. Inhibition of neutrophil elastase by mucus glycoprotein. Am J Respir Cell Mol Biol. 1994;11:103–7.

    PubMed  CAS  Google Scholar 

  • Perez-Vilar J. Mucin granule intraluminal organization. Am J Respir Cell Mol Biol. 2007;36:183–90.

    PubMed  CAS  Google Scholar 

  • Rabago D, Pasic T, Zgierska A, et al. The efficacy of hypertonic saline nasal irrigation for chronic sinonasal symptoms. Otolaryngol Head Neck Surg. 2005;133:3–8.

    PubMed  Google Scholar 

  • Ramphal R, Houdret N, Koo L, et al. Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa of patients with cystic fibrosis and chronic bronchitis. Infect Immun. 1989;57:3066–71.

    PubMed  CAS  Google Scholar 

  • Ramphal R, Carnoy C, Fievre S, et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units. Infect Immun. 1991;59:700–4.

    PubMed  CAS  Google Scholar 

  • Roberts DD, Olson LD, Barile MF, et al. Sialic acid-dependent adhesion of Mycoplasma pneumonia to purified glycoproteins. J Biol Chem. 1989;264:9289–93.

    PubMed  CAS  Google Scholar 

  • Rogers DF. Airway mucus hypersecretion in asthma: an undervalued pathology? Curr Opin Pharmacol. 2004;4:241–50.

    PubMed  CAS  Google Scholar 

  • Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86:245–78.

    PubMed  CAS  Google Scholar 

  • Rudmik L, Schlosser RJ, Smith TL, et al. Impact of topical nasal steroid therapy on symptoms of nasal polyposis: a meta-analysis. Laryngoscope. 2012. doi:10.1002/lary.23259.

    Google Scholar 

  • Sadé J, Eliezer N, Silberberg A, et al. The role of mucus in transport by cilia. Am Rev Respir Dis. 1970;102:48–52.

    PubMed  Google Scholar 

  • Sakakura Y, Majima Y, Saida S, et al. Reversibility of reduced mucociliary clearance in chronic sinusitis. Clin Otolaryngol Allied Sci. 1985;10:79–83.

    PubMed  CAS  Google Scholar 

  • Schulz BL, Sloane AJ, Robinson LJ, et al. Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology. 2007;17:698–712.

    PubMed  CAS  Google Scholar 

  • Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J Immunol. 2005;175:4009–16.

    PubMed  CAS  Google Scholar 

  • Shao MX, Nakanaga T, Nadel JA. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L420–7.

    PubMed  CAS  Google Scholar 

  • Sheehan JK, Kirkham S, Howard M, et al. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J Biol Chem. 2004;279:15698–705.

    PubMed  CAS  Google Scholar 

  • Shim JJ, Dabbagh K, Ueki IF, et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am J Physiol Lung Cell Mol Physiol. 2001;280:L134–40.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Shimizu S. Azithromycin inhibits mucus hypersecretion from airway epithelial cells. Mediators Inflamm. 2012. doi:10.1155/2012/265714.

    Google Scholar 

  • Shimizu T, Takahashi Y, Kawaguchi S, et al. Hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium induced by endotoxin. Am J Respir Crit Care Med. 1996;153:1412–8.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Hirano T, Majima Y, et al. A mechanism of antigen-induced mucus production in nasal epithelium of sensitized rats: a comparison with lipopolysaccharides-induced mucus secretion. Am J Respir Crit Care Med. 2000;161:1648–54.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Hirano H, Shimizu S, et al. Differential properties of mucous glycoproteins in rat nasal epithelium: a comparison between allergic inflammation and lipopolysaccharides stimulation. Am J Respir Crit Care Med. 2001;164:1077–82.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Shimizu S, Hattori R, et al. In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med. 2003a;168:581–7.

    PubMed  Google Scholar 

  • Shimizu T, Shimizu S, Hattori R, et al. A mechanism of antigen-induced goblet cell degranulation in the nasal epithelium of sensitized rats. J Allergy Clin Immunol. 2003b;112:119–25.

    PubMed  CAS  Google Scholar 

  • Shimizu S, Shimizu T, Morser J, et al. Role of the coagulation system in allergic inflammation in the upper airways. Clin Immunol. 2008;129:365–71.

    PubMed  CAS  Google Scholar 

  • Shimizu S, Hattori R, Majima Y, et al. Th2 cytokine inhibitor suplatast tosilate inhibits antigen-induced mucus hypersecretion in the nasal epithelium of sensitized rats. Ann Otol Rhinol Laryngol. 2009;118:67–72.

    PubMed  Google Scholar 

  • Shirai T, Sato A, Chiba K. Effect of 14-membered ring macrolide therapy on chronic respiratory tract infections and polymorphonuclear leukocyte activity. Intern Med. 1995;34:469–74.

    PubMed  CAS  Google Scholar 

  • Singer M, Martin LD, Vargaftig BB, et al. A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nat Med. 2004;10:193–6.

    PubMed  CAS  Google Scholar 

  • Singh PK, Hollingsworth MA. Cell surface-associated mucins in signal transduction. Trends Cell Biol. 2006;16:467–76.

    PubMed  CAS  Google Scholar 

  • Song JS, Hyun SW, Lillehoj E. Mucin secretion in the rat tracheal epithelial cells by epidermal growth factor and Pseudomonas aeruginosa extract. Korean J Intern Med. 2001;16:167–72.

    PubMed  CAS  Google Scholar 

  • Song K, Lee WJ, Chung KC, et al. Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J Biol Chem. 2003;278:23243–50.

    PubMed  CAS  Google Scholar 

  • Suh JD, Kennedy DW. Treatment options for chronic rhinosinusitis. Proc Am Thorac Soc. 2011;8:132–40.

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Nagao Y, Kato H, et al. Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. J Biol Chem. 1986;261:17057–61.

    PubMed  CAS  Google Scholar 

  • Suzuki H, Ikeda K, Honma R, et al. Prognostic factors of chronic rhinosinusitis under long-term low-dose macrolide therapy. ORL J Otorhinolaryngol Relat Spec. 2000;62:121–7.

    PubMed  CAS  Google Scholar 

  • Takeyama K, Dabbagh K, Lee HM, et al. Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A. 1999;96:3081–6.

    PubMed  CAS  Google Scholar 

  • Takeyama K, Jung B, Shim JJ, et al. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2001;280:L165–72.

    PubMed  CAS  Google Scholar 

  • Terran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol. 2006;68:543–61.

    Google Scholar 

  • Thai P, Loukoianow A, Wachi S, et al. Regulation of airway mucin gene expression. Annu Rev Physiol. 2008;70:405–29.

    PubMed  CAS  Google Scholar 

  • Thornton DJ, Rousseau K, McGucken MA. Structure and function of the polymeric mucins in airway mucus. Annu Rev Physiol. 2008;70:459–86.

    PubMed  CAS  Google Scholar 

  • Usui S, Shimizu T, Kishioka C, et al. Secretory cell differentiation and mucus secretion in cultures of human nasal epithelial cells: use of a monoclonal antibody to study human nasal mucin. Ann Otol Rhinol Laryngol. 2000;109:271–7.

    PubMed  CAS  Google Scholar 

  • Van- Seuningen I, Aubert JP, Davril M. Strong ionic interactions between mucins and two basic proteins, mucus proteinase inhibitor and lysozyme, in human bronchial secretions. Int J Biochem. 1992;24:303–11.

    Google Scholar 

  • Videler WJ, Badia L, Harvey RJ, et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: a randomized controlled trial. Allergy. 2011;66:1457–68.

    PubMed  CAS  Google Scholar 

  • Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135:505–12.

    PubMed  CAS  Google Scholar 

  • Voynow JA, Selby DN, Rose MC. Mucin gene expression (MUC1, MUC2, and MUC5/5AC) in nasal epithelial cells of cystic fibrosis, allergic rhinitis, and normal individuals. Lung. 1998;176:345–54.

    PubMed  CAS  Google Scholar 

  • Voynow JA, Young LR, Wang Y, et al. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol. 1999;276:L835–43.

    PubMed  CAS  Google Scholar 

  • Wallwork B, Coman W, Mackay-Sim A, et al. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2006;116:189–93.

    PubMed  CAS  Google Scholar 

  • Wan H, Kaestner KH, Ang SL, et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 2004;131:953–64.

    PubMed  CAS  Google Scholar 

  • Wawrose SF, Tami TA, Amoils CP. The role of guaifenesin in the treatment of sinonasal disease in patients infected with the human immunodeficiency virus (HIV). Laryngoscope. 1992;102:1225–8.

    PubMed  CAS  Google Scholar 

  • Weiner JM, Abramson MJ, Puy RM. Intranasal corticosteroids versus oral H1 receptor antagonists in allergic rhinitis: systematic review of randomized controlled trials. BMJ. 1998;317:1624–9.

    PubMed  CAS  Google Scholar 

  • Whittaker L, Niu N, Temann UA, et al. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol. 2002;27:593–602.

    PubMed  CAS  Google Scholar 

  • Williams OW, Sharafkhaneh A, Kim V, et al. Airway mucus; from production to secretion. Am J Respir Cell Mol Biol. 2006;34:527–36.

    PubMed  CAS  Google Scholar 

  • Wine JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci. 2007;133:35–54.

    PubMed  Google Scholar 

  • Wine JJ, Joo NS. Submucosal glands and airway defense. Proc Am Thorac Soc. 2004;1:47–53.

    PubMed  CAS  Google Scholar 

  • Yoon JH, Gray T, Guzman K, Koo JS, Nettesheim P. Regulation of the secretory phenotype of human airway epithelium by retinoic acid, triiodothyronine, and extracellular matrix. Am J Respir Cell Mol Biol. 1997;16:724–31.

    PubMed  CAS  Google Scholar 

  • Yuta A, Baraniuk JN. Therapeutic approaches to airway mucous hypersecretion. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel: Birkhauser; 1997.

    Google Scholar 

  • Zhen G, Park SW, Nguyenvu LT, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007;36:244–53.

    PubMed  CAS  Google Scholar 

  • Zudhi Alimam M, Piazza FM, Selby DM, et al. Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol. 2000;22:253–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Shimizu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimizu, T. (2013). Mucus, Goblet Cell, Submucosal Gland. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics