Skip to main content

Potential of Rhizobia in Productivity Enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. Cultivated in the Western Himalaya

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Productivity

Abstract

In the Himalayan climatic condition where temperature are crucial determinant for microbial growth as well as the growth of plant, productivity of important crops can be increased by the use of cold-tolerant rhizospheric microflora. Crop enhancement of legumes found in the western Himalaya has been reviewed in this chapter with special emphasis on Rhizobium spp. These are characterized to retain their plant growth promotory activity in suboptimal temperature conditions. Psychrotolerant rhizobia which can grow over a wide temperature range from 4 to 42 °C and usually grow optimally at temperature above 20 °C are extremely important, since they have survive and retain their functionality in low-temperature area such as Himalaya mountain ranges in India. Potential of Rhizobia in productivity enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L., the two important legumes cultivated in high altitude regions of the western Himalaya have been highlighted. Besides nitrogen fixation, the role of other PGP attributes in indigenous strains with reference to phosphate solubilization, phytohormones promotion, and siderophore production has also been analyzed in raising crop’s yield. The taxonomy of rhizobial isolates has been included which would be helpful to explore current status of rhizobia. Knowledge of the biodiversity of Rhizobium from local crops is discussed for the design of successful inoculations leading to increased yield in legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum bv. viciae phosphatases. Boil Fert Soils 8:216–218

    Article  Google Scholar 

  • Abril A, Zurdo-Pineiro JL, Peix A, Rivas R, Velásquez E (2003) Solubilization of phosphate by a strain of Rhizobium leguminosarum bv trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). In: Velázquez E (ed) First international meeting on microbial phosphate solubilization, Salamanca, Spain, 16–19 July 2002, pp 135–138

    Google Scholar 

  • Aeron A, Kumar S, Piyush P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer, Berlin, pp 1–36

    Chapter  Google Scholar 

  • Agarwal S, Ahmad Z (2010) Contribution of the Rhizobium inoculation on plant growth and productivity of two cultivars of berseem (Trifolium alexandrinum L.) in saline soil. Asian J Plant Sci 9:344–350

    Article  Google Scholar 

  • Ahmad ZI, Anjum MS, Rauf A (2006) Effect of rhizobia inoculation on growth and nodules formation of green gram. Int J Agri Biol 8(2):235–237

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Albala K (2007) Beans: a history. Berg, New York

    Google Scholar 

  • Ali ME, Khanam D, Bhuiyan MAH, Khatun MR, Talukder MR (2008) Effect of Rhizobium inoculation to different varieties of gardenpea (Pisum sativum L.). J Soil Nature 2(1):30–33

    Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Amarger N (2001) Rhizobia in the field. Adv Agron 73:109–168

    Article  CAS  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2003) FAO production year book, vol 56, pp 109–110

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Anyango B, Wilson KJ, Beynon JL, Giller KE (1995) Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61:4016–4021

    PubMed  CAS  Google Scholar 

  • Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, de Mejia E, Lila MA (2005) Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.). J Agric Food Chem 53(11):4615–4622

    Article  CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Asadi RH, Afshari M, Khavazi K, Nourgholipour F, Otadi A (2005) Effects of common bean nodulating rhizobial native to Iranian soils on the yield and quality of bean. Iran J Soil Water Sci 19:215–222

    Google Scholar 

  • Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 113–143

    Chapter  Google Scholar 

  • Bajpai PD, Sundra Rao WVB (1971) Phosphate solubilising bacteria. Soil Sci Plant Nutr 17:46–53

    Article  CAS  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Banik S, Dey BK (1983) Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate a sole phosphate source. Zentralbl Mikrobiol 138:17–23

    PubMed  CAS  Google Scholar 

  • Bardia MC, Gaur AC (1972) Rock phosphate dissolution by bacteria. Ind J Microbiol 12:269–271

    Google Scholar 

  • Barea JM, Maria J, Rosario AP, Concepcion A (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria in two classifications: biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biol Biochem 30(8/9):1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances(1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Beninger CW, Hosfield GL (2003) Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 51:7879–7883

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Zachow C (2011) PGPR interplay with rhizosphere communities and effect on plant and health. In: Maheshwari DK (ed) Bacteria in Agrobiology: Crop Ecosystems. Springer, Berlin, pp 97–109

    Chapter  Google Scholar 

  • Berge O, Lodhi A, Brandelet G, Santaella C, Marie-Anne R, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372

    Article  PubMed  CAS  Google Scholar 

  • Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510

    Article  CAS  Google Scholar 

  • Beyene D, Kassa S, Ampy F, Assafa A, Gebremedhin T, van Berkum P (2004) Ethiopian soils harbor natural populations of rhizobia that form symbiosis with common bean (Phaseolus vulgaris L.). Arch Microbiol 181:129–136

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18(9):1578–1583

    Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Briat JF (1992) Iron assimilation and storage in prokaryotes. J Gen Microbiol 138:2475–2483

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Castañeda G, Cano MEA (2000) Characterization of siderophore‐mediated iron transport from Rhizobium leguminosarum bv. phaseoli. J Plant Nutr 23(11–12):1669–1683

    Article  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chabot R, Beauchamp CE, Kloepper JW, Antoun H (1998) Effect of Phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618

    Article  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6, induces root hair curling that enhances growth of Indian mustard (Brassica campestris) and inhibits Sclerotinia sclerotiorum. Braz J Microbiol 38:124–130

    Article  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38(4):392–397

    Article  Google Scholar 

  • Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, James EK, Coenye T, Chou JH, Barrios E, de Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56(8):1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent J, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JP, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Zhu W, Bontemps C, Young J, Peter W, Wei G (2009) Mesorhizobium alhagi sp. nov., isolated from root nodules of the wild legume Alhagi sparsifolia. Int J Syst Evol Microbiol 60:958–962

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 61:574–579

    Article  PubMed  CAS  Google Scholar 

  • Choudhury B, Azad P (2005) Symbiotic properties in dual inoculation of Rhizobia and AM fungi for enhancement of pulse production in North-East Himalayan region. In: Podic GK, Varma A (eds) Biotechnological applications of microbes. IK International Pvt Ltd, Green Park Extension, New Delhi, pp 151–162

    Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223–249

    Article  PubMed  CAS  Google Scholar 

  • Cummings SP, Humphry DR, Andrews M (2001) A review of the current taxonomy and diversity of symbiotic rhizosphere and bulk soil nitrogen-fixing bacteria, which are beneficial to plants. In: Aspects of applied biology 63 plant microbial interactions: positive interactions in relation to crop production and utilization, vol 63. Association of Applied Biologists, Wellesbourne, Warwick, pp 5–18

    Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    PubMed  CAS  Google Scholar 

  • D’Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW (2007) Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 282(23):17101–17113

    Article  PubMed  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    Article  CAS  Google Scholar 

  • de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733

    Article  Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersteres K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 4:1277–1290

    Article  Google Scholar 

  • de Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75(12):4162–4174

    Article  PubMed  CAS  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Deryło M, Choma A, Puchalski B, Suchanek W (1994) Siderophore activity in Rhizobium species isolated from different legumes. Acta Biochim Pol 41(1):7–11

    PubMed  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003a) Isolation of plant growth promoting Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal root of peanut. Curr Sci 84:443–448

    Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003b) Rhizobia as a biological control agent against soil borne pathogenic fungi. Indian J Exp Biol 41:1160–1164

    PubMed  CAS  Google Scholar 

  • Deshwal VK, Kumar T, Dubey RC, Maheshwari DK (2006) Long term effect of Pseudomonas aeruginosa GRC1 on yield of subsequent crops of paddy after mustard seed bacterization. Curr Sci 91(4):423–424

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Dilworth MJ, Carson KC, Giles RGF, Byrne LT, Glenn AR (1998) Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiology 144:781–791

    Article  CAS  Google Scholar 

  • Diouf A, de Lajudie P, Neyra M, Kersters K, Gillis M, Martinez-Romero E, Gueye M (2000) Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int J Syst Evol Microbiol 50:159–170

    Article  PubMed  CAS  Google Scholar 

  • Dobereiner J, Pedroza F (1987) Nitrogen-fixing bacteria in non-leguminous crop plants. Science Tech, Madison, WI, pp 1–15

    Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterisation of Azorhizobium caulinodans gen. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Evol Microbiol 38:89–98

    CAS  Google Scholar 

  • Dubey RC, Maheshwari DK, Kumar H, Choure K (2010) Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. Afr J Biotechnol 9(50):8619–8629

    CAS  Google Scholar 

  • Duff RB, Webley DM (1959) 2-Ketogluconic acid as a natural chelator produced by soil bacteria. Chem Ind 1959:1376–1377

    Google Scholar 

  • Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis Folia. Microbiology 43:421–426

    CAS  Google Scholar 

  • Duranti M, Guis C (1997) Legume seeds: protein content and nutritional value. Field Crops Res 53:31–45

    Article  Google Scholar 

  • Dursun A (2007) Variability, Heritability and correlation studies in bean (Phaseolus vulgaris L.) genotypes. World J Agric Sci 3(1):12–16

    Google Scholar 

  • Egli DB (1998) Seed biology and the yield of grain crops. CAB International, Wallingford, UK

    Google Scholar 

  • Epping B, Hansen A, Djlaji B, Martin P (1994) Symbiotic efficiency of four Phaseolus vulgaris genotypes after inoculation with different strains of Rhizobium under controlled conditions. Z Naturforsch 49:343–351

    CAS  Google Scholar 

  • Escribano MR, Santalla M, de Ron AM (1997) Genetic diversity in pod and seed quality traits of common bean population from northwestern Spain. Euphytica 93:71–81

    Article  Google Scholar 

  • Esitken A (2011) Use of plant growth promoting rhizobacteria in horticultural crops. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer, Berlin, pp 189–236

    Chapter  Google Scholar 

  • Estrella MJ, Muñoz S, Soto MJ, Ruiz O, Sanjuán J (2009) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado river basin (Argentina). Appl Environ Microbiol 75(4):1088–1098

    Article  PubMed  CAS  Google Scholar 

  • Feng K, Lu HM, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14:85–92

    CAS  Google Scholar 

  • Fernandez LA, Zalba P, Gomez M, Sagardoy MA (2007) Phosphate solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Flaishman MA, Eyal Z, Zilberstein A, Voisarsd C, Haas D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol Plant Microbe Interact 9:642–645

    Article  CAS  Google Scholar 

  • Frank B (1889) Uber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Bereu Deut Bot Ges 7:332–346

    Google Scholar 

  • Frankenberger WTJ, Arshad M (1990) Yield response of Capsicum annuum to the auxin precursor, L-tryptophan applied to soil. PGRSA Q 19:231–240

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Frommel ML, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum sp. tuberosum) as affected by a non-fluorescent pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  • Fulchieir M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status on corn seedling roots. Plant Cell Physiol 34:1305–1309

    Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin. doi:101007/978-3-642-21061-7_2

    Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martinez-Molina E, Mateos PF, Velazquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fraile P, Mulas-Garcia D, Peix A, Rivas R, Gonzalez-Andres F, Encarna V (2010) Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56(8):657–666

    Article  PubMed  CAS  Google Scholar 

  • Gaur RD, Dangwal LR (1997) New species of Macrotyloma (Wight and Arn) Verdc (Fabaceae) from Garhwal Himalaya, UP, India. J Bombay Nat Hist Soc 94:381–383

    Google Scholar 

  • Ghosh AC, Basu PS (2002) Growth behaviour and bioproduction of indole acetic acid by a Rhizobium sp. isolated from root nodules of a leguminous tree Dalbergia lanceolaria. Indian J Exp Biol 40(7):796–801

    PubMed  CAS  Google Scholar 

  • Ghosh S, Maiti TK, Basu PS (2008) Bioproduction of ascorbic acid in root nodule and root of the legume pulse Phaseolus mungo. Curr Microbiol 56(5):495–498

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Karatuprovic DM, Newwll PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanism used by plant growth-promoting bacteria. Imperial College Press, London, UK

    Book  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of microbial phosphates: a historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Gonzalez de Mejia E, Valdez-Vega MC, Reynoso-Camacho R, Loarca-Pina G (2005) Tannins, trypsin inhibitors and lectin cytotoxicity in tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) beans. Plant Foods Hum Nutr 60:137–145

    Article  CAS  Google Scholar 

  • Grange L, Hungria M (2004) Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol Biochem 36:1389–1398

    Article  CAS  Google Scholar 

  • Gressent F, Mantegazza N, Cullimore JV, Driguez H, Ranjeva R, Bono JJ (2002) High-affinity Nod factor binding site from Phaseolus vulgaris cell suspension cultures. Mol Plant Microbe Interact 15(8):834–839

    Article  PubMed  CAS  Google Scholar 

  • Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368

    Article  PubMed  CAS  Google Scholar 

  • Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX (2008) Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58(11):2646–2653

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML, Meidl EJ, Plessener O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303

    PubMed  CAS  Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (1999) Pseudomonas aeruginosa as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios 99:183–189

    PubMed  CAS  Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001a) Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr Sci 81:90–94

    Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (2001b) Effect of metal ions on the growth of Pseudomonas aeruginosa and siderophore and protein production. Indian J Exp Biol 39:1318–1321

    PubMed  CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fert Soil 35:399–405

    Article  CAS  Google Scholar 

  • Gutierrez RM, Barraquio WL (2010) Acid-tolerant rhizobia of Phaseolus vulgaris L. from the intensively cropped soils of La Trinidad, Benguet, Philippines. Philip J Sci 139(1):79–90

    Google Scholar 

  • Guzman-Maldonado SH, Paredes-Lopez O (1998) Functional products of plants indigenous of Latin America: amaranth, quinoa, common beans and botanicals. In: Mazz G, Thechnomic Lancaster PA (eds) Functional foods biochemical and processing aspects. CRC, Boca Raton, FL, pp 39–328

    Google Scholar 

  • Haas D, Defago G (2005) Biological control soil born pathogen by fluorescent Pseudomonas. Nat Rev Microbiol 1038:1129–1141

    Google Scholar 

  • Halder AK, Chakrobartty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008a) Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58(11):2610–2618

    Article  PubMed  CAS  Google Scholar 

  • Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008b) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Hangen L, Bennick M (2002) Consumption of black beans and navy beans (P. vulgaris) to reduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant microbes symbiosis. Plant Soil 194:171–184

    Article  CAS  Google Scholar 

  • Höflich G, Wiehe W, Hecht-Buchholz C (1995) Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147

    Article  Google Scholar 

  • Hoque MM, Haq MF (1994) Rhizobial inoculation and fertilization of lentil in Bangladesh. Lens Newsl 21:29–30

    Google Scholar 

  • Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37

    Article  Google Scholar 

  • Husen E, Wahyudi AT, Suwanto A, Saraswati R (2009) Soybean seedling root growth promotion by 1-aminocyclopropane-1-carboxylate deaminase-producing pseudomonads. Indones J Agric Sci 10(1):19–25

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2008) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429

    Article  PubMed  CAS  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380

    Article  Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Jeffries S, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jethi RK, Duggal B, Sahota RS, Gupta M, Sofat JB (1983) Important plants used in stone. Indian J Med Res 78:422–425

    PubMed  CAS  Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen nov., a genus of slow-growing root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Article  Google Scholar 

  • Jordan DC (1984) Family III Rhizobeaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systemic bacteriology, vol 1. The Williams and Wilkins Co, Baltimore, pp 234–242

    Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willens A, Gillis M, Dreyfus B, Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  PubMed  CAS  Google Scholar 

  • Kala TC, Christi RM, Bai NR (2011) Effect of Rhizobium inoculation on the growth and yield of horsegram (Dolichos biflorus L.). Plant Arch 11(1):97–99

    Google Scholar 

  • Kang SC, Chul GH, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil inhabiting fungus, Fomitopsis spp. PS 102. Curr Sci 25:439–442

    Google Scholar 

  • Kaschuk G, Hungria M, Anderde DS, Campo RJ (2006) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no tillage and conventional system in Southern Brazil. Appl soil Ecol 32:210–220

    Article  Google Scholar 

  • Katiyar RP (1984) ‘Kulthi’ a promising pulse crop for Himachal Hills. Indian Fmg 34(9):31–35

    Google Scholar 

  • Katznelson H, Bose B (1959) Metabolic activity and phosphate dissolving capability of Bacterial isolates from wheat roots, rhizosphere and non-rhizosphere soil. Can J Microbiol 5:79–85

    Article  PubMed  CAS  Google Scholar 

  • Khalequzzaman KM, Hossain I (2007) Effect of seed treatment with Rhizobium strains and biofertilizers on foot/root rot and yield of bushbean in Fusarium solani infested soil. J Agric Res 45(2):151–160

    Google Scholar 

  • Khalequzzaman KM, Hossain I (2008) Effect of Rhizobium strains and biofertilizers on foot, root rot and yield of Bush bean in Sclerotinia sclerotiorum infested soil. J Bio Sci 16:73–78

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Geetha R, Akolkar A, Pandya A, Archana G, Desai AJ (2006) Differential cross-utilization of heterologous siderophores by nodule bacteria of Cajanus cajan and its possible role in growth under iron-limited conditions. Appl Soil Ecol 34(1):19–26

    Article  Google Scholar 

  • Kloepper JW, Schorth, MN (1978) Plant growth promoting rhizobacteria on radishes. In: Angers INRA (ed) Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2, station de pathologie, Gibert-Clarey Tours, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soil. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Schorth MN (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas of Science, Animal and Plant Science Institute for Public Information, Philadelphia, PA, pp 60–64

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowich RK (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Gutierrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53:159–167

    Article  PubMed  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Kumar B (2006) Biocontrol potential of microbial consortium on Macrophomina phaseolina causing root-rot of Sesamum indicum L. PhD Thesis, Gurukul, Kangri University, Haridwar, Uttaranchal, India

    Google Scholar 

  • Kumar B, Dubey RC, Maheshwari DK (2005) Biocontrol of Macrophomina phaseolina: Prospects and Constraints. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. IK International Pvt Ltd, New Delhi, pp 471–492

    Google Scholar 

  • Kumar B, Kumar MS, Annapurna K, Maheshwari DK (2006) Genetic diversity of plant growth promoting rhizobia isolated from a medicinal legume, Mucuna pruriens L. Curr Sci 91(11):1524–1529

    CAS  Google Scholar 

  • Kumar V, Dubey RC, Maheshwari DK (2008a) Coinoculation of PGPR for plant growth promotion and disease control. In: Maheshwari DK, Dubey RC (eds) Microorganism for sustainable agriculture: a techno-commercial perspective. IK International, New Delhi, pp 1–25

    Google Scholar 

  • Kumar V, Sharma S, Sharma AK, Kumar M, Sharma S, Malik S, Singh KP, Sanger RS, Bhat KV (2008b) Genetic diversity in Indian common bean (Phaseolus vulgaris L.) using random amplified polymorphic DNA markers. Physiol Mol Plants 14(4):383–387

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var Manak by bacterial combinations amended with chemical fertilizer. Crop Protect 29:591–598

    Article  Google Scholar 

  • Kumar H, Dubey RC, Maheshwari DK (2011) Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonella foenum-graecum L.). Crop Protect 30:1396–1403

    Article  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Laguerre G, Fernandez MP, Edel V, Normand P, Amarger N (1993) Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus Vulgaris L. Int J Syst Bacteriol 43:761–767

    Article  PubMed  CAS  Google Scholar 

  • Lee KD, Bai Y, Smith D, Han HS (2005) Supanjan isolation of plant-growth-promoting endophytic bacteria from bean nodules. Res J Agric Biol Sci 1(3):232–236

    Google Scholar 

  • Leelahawonge C, Nuntagij A, Teaumroong N, Boonkerd N, Pongsilp N (2010) Characterization of root-nodule bacteria isolated from the medicinal legume Indigofera tinctoria. Ann Microbiol 60:65–74

    Article  CAS  Google Scholar 

  • Lhuissier FGP, de Ruijter NCA, Sieberer BJ, Esseling JJ, Emons AMC (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium Nod factors: state of the art. Ann Bot 87:289–302

    Article  CAS  Google Scholar 

  • Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61(8):1981–1988

    Article  PubMed  CAS  Google Scholar 

  • Libbert E, Silhengst P (1970) Interactions between plants and epiphytic bacteria regarding their auxin metabolism VIII Transfer of 14C-indoleacetic acid from epiphytic bacteria to corn coleoptiles. Physiol Plant 23:480–487

    Article  CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923

    Article  PubMed  Google Scholar 

  • Lindstrom K (1988) Rhizobium galegae, a new species of legume root nodule. Int J Syst Evol Microbiol 39(3):365–367

    Google Scholar 

  • Lindström K, Paulin L, Roos C, Suominen L (1995) Nodulation genes of Rhizobium galegae. In: Tikhonovitch IA, Provorov NA, Romanov VI, Nexton WE (eds) Nitrogen fixation: fundamentals and applications. Proceedings of the 10th international congress on nitrogen fixation. Kluwer, Dordrecht, pp 365–370

    Chapter  Google Scholar 

  • Lloret L, Ormeno-Orrillo E, Rincon R, Martinez-Romero J, Rogel-Hernandez MA, Martinez-Romero E (2007) Ensifer mexicanus sp. nov., a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30(4):280–290

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lopez A, Rogel Marco A, Ormeno-Orrillo E, Martinez-Romero J, Martinez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33(6):322–327

    Article  PubMed  Google Scholar 

  • Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, Han SZ (2009a) Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int J Syst Evol Microbiol 59(12):3012–3018

    Article  PubMed  CAS  Google Scholar 

  • Lu YL, Chen WF, Han LL, Wang ET, Chen WX (2009b) Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int J Syst Evol Microbiol 59(12):3006–3011

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick R (2004) Application of free living plant growth promoting rhizobacteria. Ant Van Leeuwen 86:1–25

    Article  CAS  Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Adv Soil Sci 2:133–171

    Article  Google Scholar 

  • Lynch D, O’Brien J, Welch T, Clarke P, ÓCuív P, Crosa JH, O’Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183(8):2576–2585

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SAZ, Ramadan EM, Thabet FM, Khater T (1984) Production of plant growth promoting substances by Rhizosphere microorganisms. Zbl Mikrobiol 139:227–232

    Google Scholar 

  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484

    Article  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  PubMed  CAS  Google Scholar 

  • Mantelin S, Saux MFL, Zakhia F, Bena G, Bonneau S, Jeder H, de Lajudie P, Cleyet-Marel JC (2006) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56(4):827–839

    Article  PubMed  CAS  Google Scholar 

  • Martens M, Delaere M, Coopman R, De Vos P, Gillis M, Willems A (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  CAS  Google Scholar 

  • Mathiyazhagan S, Kavitha K, Nakkeeran S, Chandrasekar G, Manian K, Renukadevi P, Krishnamoorthy AS, Fernando WGD (2004) PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Arch Phytopathol Plant Prot 37:183–199

    Article  CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    CAS  Google Scholar 

  • Matthew KM (1983) The flora of the Tamil Nadu carnatic Part one polypetalae, The Rapinat Herbarium. St Joseph’s College, Tiruchirapalli

    Google Scholar 

  • Mazen MM, El-Batanony NH, Abd El-Monium MM, Massoud ON (2008) Cultural filtrate of Rhizobium spp. and arbuscular mycorrhiza are potential biological control agents against root rot fungal diseases of faba bean. Global J Biotechnol Biochem 3(1):32–41

    Google Scholar 

  • Mehboob J, Zahir ZA, Arshad M, Tanveer A, Azam F (2011) Growth promoting activities of different Rhizobium spp. in wheat. Pak J Bot 43(3):1643–1650

    Google Scholar 

  • Mehdi Z, Nahid S-R, Alikhani HA, Nasser A (2006) Response of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    Article  CAS  Google Scholar 

  • Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674

    Article  PubMed  CAS  Google Scholar 

  • Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotype of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41:77–84

    Article  PubMed  CAS  Google Scholar 

  • Minaxi, Saxena J (2010) Disease suppression and crop improvement in moong beans (Vigna radiata) through Pseudomonas and Burkholderia strains isolated from semi-arid region of Rajasthan, India. BioControl 55:799–810

    Google Scholar 

  • Mishra RK, Prakash O, Alam M, Dikshit A (2010) Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. Herit. Rec Res Sci Tech 2(5):53–57

    CAS  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007a) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol biochem 39:1744–1750

    Article  CAS  Google Scholar 

  • Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007b) Salt-tolerant rhizobial isolated from a Tunisian oasis that are highly effective for symbiotic N2- fixation with Phaseolus vulgaris constitute a novel biovar bv. mediterranense of Sinorhizobium meliloti. Arch Microbiol 187:79–85

    Article  PubMed  CAS  Google Scholar 

  • Moghimi A, Tate ME, Oades JM (1978) Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biol Biochem 10(4):283–287

    Article  CAS  Google Scholar 

  • Mohammed Ahmed TH, Elsheikh EAE, Mahadi AA (2009) The in vitro compatibility of some Rhizobium and Bradyrhizobium strains with fungicides. Afr Crop Sci Conf Proc B:1171–1178

    Google Scholar 

  • Mordukhova EA, Skvortsova NP, Kochaetko VV, Dubeikovskii AN, Boronin AM (1991) Synthesis of the phytohormone indole-3 acetic acid by rhizosphere bacteria by the genus Pseudomonas. Mikrobiologiya 60:494–500

    CAS  Google Scholar 

  • Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2002) Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Res 73:121–132

    Article  Google Scholar 

  • Mouhsine B, Prell J, Filali-Maltouf A, Priefer UB, Aurag J (2007) Diversity, phylogeny and distribution of bean rhizobia in salt affected soils of North-West Morocco. Symbiosis 43:83–96

    CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee T, Bhalla N, Singh G, Aulakh K, Jain HC (1984) Herbal drugs for urinary stones. Indian Drugs 21:224–228

    Google Scholar 

  • Nair NC, Henry AN (1983) Flora of Tamil Nadu, India, vol I, Series I: analysis. Botanical Survey of India Southern circle, Coimbatore, pp 1–84

    Google Scholar 

  • Nandasena KG, O’Hara GW, Tiwari RP, Willlems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59(9):2140–2197

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC, Boca Raton, FL, pp 1–14

    Google Scholar 

  • Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Noel TC, Sheng C, York CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  PubMed  CAS  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Beck D, Effosse A, Fernandez MP (1994) Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Can J Microbiol 40:345–354

    Article  PubMed  CAS  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Evol Microbiol 45(4):640–648

    CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Ocho-Anin Atchibri AL, Kouakou TH, Brou KD, Kouadio YJ, Gnakri D (2010) Evaluation of bioactive components in seeds of Phaseolus vulgaris L. (fabaceae) cultivated in Côte d’Ivoire. J Appl Biosci 31:1928–1934

    Google Scholar 

  • Odee DW, Hukka K, McInroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legume grown in soils form ecologically diverse site in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  • Ogasawara M, Suzuki T, Muthoh I, Annapurna K, Arora NK, Nishimura Y, Maheshwari DK (2003) Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68

    Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26(12):1591–1601

    Article  CAS  Google Scholar 

  • Omar SA (1998) The role of rock-phosphate-solubilizing fungi and vesicular–arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    Article  CAS  Google Scholar 

  • Osorio NW (2011) Effectiveness of phosphate solubilizing microorganism in increasing plant phosphate uptake and growth in tropical soils. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 65–80

    Chapter  Google Scholar 

  • Paio CG, Tang WH, Chen YX (1992) Study on the biological activity of yield-increasing bacteria. Chin J Microecol 4:55–62

    Google Scholar 

  • Pandey P, Sahgal M, Maheswari DK, Johri BN (2004) Genetic diversity of rhizobia isolated from medicinal legumes growing in the sub-Himalayan region of Uttaranchal. Curr Sci 86:202–207

    CAS  Google Scholar 

  • Park RY, Choi MH, Sun HY, Shin SH (2005) Production of catechol-siderophore and utilization of transferrin-bound iron in Bacillus cereus. Biol Pharm Bull 28(6):1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Patra DK, Bhattacharyya P (1998) Response of cowpea rhizobia on nodulation and yield of mungbean. J Mycopathol Res 36:17–23

    Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plan root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163

    Article  PubMed  CAS  Google Scholar 

  • Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PRJ, Neilands JB (1993) Isolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc 115:3950–3956

    Article  CAS  Google Scholar 

  • Pongsilp N, Nuntagij A (2009) Genetic diversity and metabolite production of root-nodule bacteria isolated from medicinal legumes Indigofera tinctoria, Pueraria mirifica and Derris elliptica Benth grown in different geographic origins across Thailand. Am Eur J Agric Biol Sci 6:26–34

    CAS  Google Scholar 

  • Prabhavati E, Mallaiah KV (2008) Production of indole acetic acid by Rhizobium sp. nodulating Macrotyloma uniflorum (Lam.) Verdc. Asian J Soil Sci 3(1):146–148

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants I Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  PubMed  CAS  Google Scholar 

  • Pullaiah T (2006) Encyclopedia of world medicinal plants, vol 2. Regency Publications, New Delhi, pp 599–600

    Google Scholar 

  • Pullaiah T, Chennaiah E (1997) Flora of Andhra Pradesh (India), vol 1, Ranaculace-Alangiaceae. Scientific Publishers, Jodhpur

    Google Scholar 

  • Pulseglove JW (1974) Dolichos uniflorus. In: Tropical crops: dicotyledons. Longman, London, pp 263–264

    Google Scholar 

  • Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov., isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55(6):2543–2549

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martinez-Molina E, Velazquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL R trifolii is a later synonym of R leguminosarum Reclassification of the strain R leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    Article  PubMed  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Ren DW, Chen WF, Sui XH, Wang ET, Chen WX (2011a) Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61:1912–1920

    Article  CAS  Google Scholar 

  • Ren DW, Wang ET, Chen WF, Sui XH, Zhang XX, Liu HC, Chen WX (2011b) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species nov. Int J Syst Evol Microbiol 61:580–586

    Article  CAS  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in-vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532

    Article  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martı’nez-Molina E, Gillis M, Vela’zquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Basu PS (1989) Production of 3-indoleacetic acid by a Rhizobium sp. from Mimosa pudica. Folia Microbiol 34(2):120–126

    Article  Google Scholar 

  • Roy N, Bhattacharyya P, Chakrabartty PK (1994) Iron acquisition during growth in an iron deficient medium by Rhizobium sp. isolated from Cicer arietinum. Microbiology 140:2811–2820

    Article  CAS  Google Scholar 

  • Sahasrabudhe MM (2011) Screening of rhizobia for indole acetic acid production. Ann Biol Res 2(4):460–468

    CAS  Google Scholar 

  • Salisbury EB (1994) The role of plant hormones. In: Wilkinson RE, Dekker M (eds) Plant environment interactions. Dekker, New York, pp 39–81

    Google Scholar 

  • Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 365–385

    Chapter  Google Scholar 

  • Saraf M, Rajkumar S, Saha T (2011) Perspectives of PGPR in Agri-Ecosystems. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 361–385

    Chapter  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC gene sequence from soil total DNA and comparison of nodC diversity of root nodule bacteria. FEMS Microbiol Ecol 54:1–11

    Article  PubMed  CAS  Google Scholar 

  • Segovia L, Young JPW, Martinez-Romero E (1993) Reclassification of American rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Shamseldin A, Werner D (2007) Presence of Rhizobium etli biovar phaseoli and Rhizobium gallicum biovar gallicum in Egyptian soils. World J Microbiol Biotechnol 23:285–289

    Article  Google Scholar 

  • Shamseldin AAY, Vinuesa P, Thierfelder H, Werner D (2005) Rhizobium etli and Rhizobium gallicum nodulate Phaseolus vulgaris in Egyptian soils and display cultivar- dependent symbiotic efficiency. Symbiosis 38:145–161

    CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara G (1992) Isolation of 2,4-diacetylphoroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    Google Scholar 

  • Sharon DA (2003) Dry bean production guide, Ith edn. North Dakota State University, Fargo North Dakota

    Google Scholar 

  • Shiferaw B, Bantilan MCS, Serraj R (2004) Harnessing the potential of BNF for poor farmers: technological policy and institutional constraints and research need. In: Serraj R (ed) Symbiotic nitrogen fixation; prospects for enhanced application in tropical agriculture. Oxford and IBH, New Delhi, p 3

    Google Scholar 

  • Shukla SK, Mahajan V, Gupta HS (2006) Horsegram in Uttaranchal-status, constraints and prospects. In: Kumar D (ed) Horsegram in India. Scientific Publishers, Jodhpur, India

    Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Chapter  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Martinez-Romero E, Souza V (2003) Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications. Appl Environ Microbiol 69:884–893

    Article  PubMed  CAS  Google Scholar 

  • Silva-Stenico ME, Pacheco FTH, Rodrigues JLM, Carrilho E, Tsai SM (2005) Growth and siderophore production of Xylella fastidiosa under iron-limited conditions. Microbiol Res 160:429–436

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biocontrol of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir pine. Crop Protect 29:1142–1147

    Article  Google Scholar 

  • Singhla SK, Kumar K (1985) Inhibitors of calcification from Dolichos biflorus. In: Proceedings of the third national conference of urolithiasis, vol 51. Society of India, Udaipur, pp 27–28

    Google Scholar 

  • Spence N (2006) Bean root rot disease management in Uganda (DFID project ref, R8478, NR Int Code ZA0689). Final technical report, International Development Team, Central Science Laboratory (DEFRA)

    Google Scholar 

  • Squartini A, Struffi P, Doring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velazquez E, Mateos PF, Martinez-Molina E, Dazzo FB, Casella S, Nuti MP (2002) Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Sridevi M, Mallaiah KV (2007a) Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop Sesbania sesban (L.) Merr. Iran J Biotechnol 5(3):178–182

    CAS  Google Scholar 

  • Sridevi M, Mallaiah KV (2007b) Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afr J Microbiol Res 1(7):125–128

    Google Scholar 

  • Sridevi M, Kumar KG, Mallaiah KV (2008) Production of catechol-type of siderophores by Rhizobium sp. isolated from stem nodules of Sesbania procumbens (Roxb.) W and A. Res J Microbiol 3:282–287

    Article  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New York

    Google Scholar 

  • Stocco P, Santos JCP, Vargas VP, Hungria M (2008) Avaliação da biodiversidade de rizóbios simbiontes do fejoeiro (Phaseolus vulgaris L.) em Santa Catarina. R Bras Ci Solo 32:1107–1120

    Article  CAS  Google Scholar 

  • Subba Rao NS (1982) Phosphate solubilization by soil microorganisms. In: SubbaRao NS (ed) Advances in agricultural microbiology. Butterworth Scientific, London, pp 295–303

    Google Scholar 

  • Subba Rao NS (1993) Biofertilizers in agriculture and forestry. Oxford and IBH publishing Co. Pvt Ltd, Janpath, New Delhi

    Google Scholar 

  • Takahashi S, Anwar MR (2007) Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an andosol. Field Crops Res 101:160–171

    Article  Google Scholar 

  • Tamimi SM, Young JPW (2004) Rhizobium etli is the dominant common bean nodulating rhizobia in cultivated soils from different locations in Jordan. Appl Soil Ecol 26:193–200

    Article  Google Scholar 

  • Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914

    Article  PubMed  CAS  Google Scholar 

  • Tang WH (1994) Yield-increasing bacteria (YIB) and biocontrol of sheath blight of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Common wealth Scientific and Industrial Research Organisation, Adelaide, Australia, pp 267–278

    Google Scholar 

  • Taylor JD, Day JM, Dudley CL (1983) The effect of Rhizobium inoculation and nitrogen fertilizer on nitrogen fixation and seed yield of dry beans (Phaseolus vulgaris). Ann Appl Biol 103:419–429

    Article  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Rev Mol Cell Biol 7:847–859

    Article  CAS  Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Baro RC, Khan MR (2004) Characterisation and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985

    Google Scholar 

  • Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875

    Article  PubMed  CAS  Google Scholar 

  • Tien TM, Gaskin MH, Hubbel DH (1979) Plant growth substances produced by A. brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed  CAS  Google Scholar 

  • Tilak KVSR (1992) VAM-nitrogen fixing organisms interaction: an all India review. In: Mycorrhizae: an Asian overview. TERI, New Delhi, pp 31–37

    Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’ Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Daniel S, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

    Article  PubMed  CAS  Google Scholar 

  • Toledo I, Lloret L, Martinez-Romero E (2004) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64

    Article  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus by strains of the new species Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov., a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  PubMed  CAS  Google Scholar 

  • Van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD (1998) Rhizobium mongolense sp. nov., is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22

    Article  PubMed  Google Scholar 

  • Vandamme P, Mahenthiralingam E, Holmes B, Coenye T, Hoste B, De Vos P, Henry D, Speert DP (2000) Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 38:1042–1047

    PubMed  CAS  Google Scholar 

  • Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma JJ, Speert DP, Govan JR, Mahenthiralingam E (2002) Burkholderia anthina sp. nov., and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33(2):143–149

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Govan JRW, LiPuma JJ (2007) Diversity and role of Burkholderia spp. In: Coenye T, Vandamme PAR (eds) Burkholderia genomics. Horizon Scientific Press, Norwich, pp 1–28

    Google Scholar 

  • Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Passaglia LMP (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande Do Sul State. R Bras Ci Solo 33:1227–1235

    Article  Google Scholar 

  • Velazquez E, Igual JM, Willems A et al (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Verdcourt B (1982) A revision of Macrotyloma (Leguminosae). Hooker’s Icones Plant 38:1–138

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.). Int J Agric Res 5(3):148–156

    Article  CAS  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Maure L, Escarre J, Bena G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    Article  PubMed  CAS  Google Scholar 

  • Viswanatha KP, Henry A, Tikka SBS, Kumar D (2006) Quality, uses and nutrition of horsegram. In: Kumar D (ed) Horsegram in India. Scientific Publishers, Jodhpur, pp 87–98

    Google Scholar 

  • Wang ET, Van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martınez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Rogel MA, Garcia-de los Santos A, Martinez-Romero J, Rogel MA, Martinez-Romero E (1999a) Rhizobium etli bv mimosa, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Van Berkum P, Sui XH, Beyene D, Chen WX, Martınez-Romero E (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Evol Microbiol 49:51–65

    Google Scholar 

  • Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li P, Cao X, Wang X, Zhang A, Li X (2009) Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun 378:799–803

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotech Letter 30:159–163

    Article  CAS  Google Scholar 

  • Wei GH, Chen WX, Wang ET, Tan ZX, Zhu ME (2002) Rhizobium indigoferae sp. nov., and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239

    Article  PubMed  CAS  Google Scholar 

  • Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53(5):1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil borne pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:279–407

    Article  Google Scholar 

  • White JGH (ed) (1989) Grain legumes in sustainable cropping systems: a review. Agronomy Society of New Zealand, Lincoln, Special publication no 7, pp 109–115

    Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore-bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161–169

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34(2):181–188

    Article  CAS  Google Scholar 

  • Yadav KS, Dadarwal KR (1997) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India, pp 293–308

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    Article  PubMed  CAS  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  • Young JM, Park D, Weir D (2004) Diversity of 16S rDNA sequences of Rhizobium spp. implications for species determinations. FEMS Microbiol Lett 238:125–131

    PubMed  CAS  Google Scholar 

  • Zahir AZ, Yasin HM, Naveed M, Anjum MA, Khalid M (2010) L-Tryptophan application enhances the effectiveness of Rhizobium inoculation for improving growth and yield of mungbean (Vigna Radiata L. Wilczek). Pak J Bot 42(3):1771–1780

    CAS  Google Scholar 

  • Zhang XX, Turner SL, Guo XW, Yang HJ, Debelle F, Yang GP, Denarie J, Young PW, Li FD (2000) The common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity. Appl Environ Microbiol 66:2988–2995

    Article  PubMed  CAS  Google Scholar 

  • Zhang RJ, Hou BC, Wang ET, Li YJ, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517

    Article  PubMed  CAS  Google Scholar 

  • Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60:2552–2556

    Article  PubMed  CAS  Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    Article  PubMed  CAS  Google Scholar 

  • Zurdo-Piñeiro JL, Garcia-Fraile P, Rivas R, Peix A, León-Barrios M, Willems A, Francisco Mateos P, Martinez-Molina E, Velazquez E, van Berkum P (2009) Rhizobia from Lanzarote, the Canary islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain. Appl Environ Microbiol 75(8):2354–2359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Thanks are due to UCOST (Dehradun) and UGC (New Delhi) for providing financial support in the form of research project to DKM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh K. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maheshwari, D.K., Agarwal, M., Dheeman, S., Saraf, M. (2013). Potential of Rhizobia in Productivity Enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. Cultivated in the Western Himalaya. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_6

Download citation

Publish with us

Policies and ethics