Skip to main content

Beneficial Effects of Plant Growth-Promoting Rhizobacteria on Improved Crop Production: Prospects for Developing Economies

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Productivity

Abstract

Beneficial microbes have a long history in agriculture, but published data in recent decades indicated that such microbes, particularly plant growth-promoting rhizobacteria (PGPR), have lots of untapped potentials in improving agricultural production and environmental management. In some regions of the world, vast areas of land are highly weathered, very low in soil fertility including macro- and/or micronutrients, and there is high application of nitrogen and phosphorus. In some other regions, there is low rainfall, high evaporative demand, increase in soil salinity, and increase in soluble salts concentration of irrigation water. In the regions, these issues have been major impediments against agriculture. However, the development of local food production is crucial in determining progress or failure in improving food security worldwide. This chapter discusses available evidences of prospects of PGPR in better agricultural productivity and food security such as possible roles in better plant nutrient uptake, reduced use of chemical fertilizers, and enhanced or induced systemic plants’ tolerance to adverse environmental stresses, especially salt stress. The concept of integrated nutrient management (INM) systems remains very important. Focus was given to unexplored possibilities of PGPR with reference to biofertilization and biological control in developing economies and how the benefits can be maximized in Africa and Asian region, including Asia Pacific and Middle East. The biological and edaphic factors, which may affect PGPR effectiveness in different regions of the world, were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  PubMed  CAS  Google Scholar 

  • Adesemoye AO, Ugoji EO (2006) Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria (PGPR) in West Africa. Arch Phytopathol Plant Protect 42(2):188–200

    Article  Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008a) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008b) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  PubMed  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  PubMed  CAS  Google Scholar 

  • Afzal A, Ashraf M, Asad SA, Farooq M (2005) Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int J Agric Biol 7:207–209

    Google Scholar 

  • Akanbi WB, Adebayo TA, Togun OA, Adeyeye AS, Olaniran OA (2007) The use of compost extract as foliar spray nutrient source and botanical insecticide in Telfairia occidentalis. World J Agric Sci 3:642–652

    Google Scholar 

  • Alva AK, Huang B, Paramasivam S (2000) Soil pH affects copper fractionation and phytotoxicity. Soil Sci Soc Am J 64:955–962

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Babalola OO, Berner DK, Amusa NA (2007) Evaluation of some bacterial isolates as germination stimulants of Striga hermonthica. Afr J Agric Res 2:27–30

    Google Scholar 

  • Belimov AA, Kojemiakov PA, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 17:29–37

    Article  Google Scholar 

  • Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dye F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159(9–10):699–708

    Article  PubMed  CAS  Google Scholar 

  • Buyer JS, Kratzke MG, Sikora LJ (1993) A method for detection of pseudobactin, the siderophore produced by a plant-growth promoting Pseudomonas strain, in the barley rhizosphere. Appl Environ Microbiol 59:677–681

    PubMed  CAS  Google Scholar 

  • Çakmakçi R, Kantar F, Sahin F (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164:527–531

    Article  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107(2):625–634

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Compant SW, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71:4951–4959

    Article  CAS  Google Scholar 

  • Dardanelli MS, Carletti SM, Paulucci NS, Medeot DB, Rodriguez Caceres EA, Vita FA, Bueno M, Fumero MV, Garcia MB (2010) Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Dashti N, Zhang F, Hynes RK, Smith DL (1997) Application of plant growth-promoting rhizobacteria to soybean (Glycine max L. Merr.) increases protein and dry matter yield under short season conditions. Plant Soil 188:33–41

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Anguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:2–54

    Google Scholar 

  • Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

    Article  PubMed  CAS  Google Scholar 

  • Egamberdieva D (2008) Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32(1):9–15

    Google Scholar 

  • Egamberdieva D (2010) Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant Soil Environ 56(12):570–573

    Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:561–573

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2010) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soil 47:197–205

    Article  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2002) Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. J Plant Growth Regul 38:219–224

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003) Influence of growth promoting bacteria on the growth of wheat at different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH, Weinheim, pp 257–281

    Chapter  Google Scholar 

  • Egamberdiyeva D, Juraeva D, Gafurova L, Hoflich G (2002) Promotion of plant growth of maize by plant growth promoting bacteria in different soils. In: Proceeding book of 25th annual conservation tillage conference for sustainable agriculture, Alabama, 24–26 June, pp 239–244

    Google Scholar 

  • Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L, Aliev A (2004) Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilising bacteria. In: Proceeding of 26th annual conservation tillage conference for sustainable agriculture, Auburn, pp 58–65

    Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in Central Asia. Taylor-Francis, New York, pp 147–162

    Chapter  Google Scholar 

  • El-Azouni IM (2008) Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.). J Appl Sci Res 4(6):592–598

    CAS  Google Scholar 

  • Food and Agriculture Organisation (FAO) (2002) World agriculture: towards 2015/2030. Summary report. FAO Information Division, Rome, Italy. ISBN 92-5-104761-8

    Google Scholar 

  • Galal YG, El-Gandaour JA, El-Akel FA (2001) Stimulation of wheat growth and N fixation through Azospirillum and Rhizobium inoculation. A field trial with 15N techniques. In: Horst WJ (ed) Plant nutrition—food security and sustainability of agroecosystems. Kluwer Academic, Netherlands, pp 666–667

    Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 5:35–40

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: on overview of research and extension needs. Field Crops Res 65:93–106

    Article  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Mehboob-ur-Rahman ZY, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sust Develop 26:143–150

    Article  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2006) Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163(2):234–242

    Article  PubMed  Google Scholar 

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum aestivum seedlings under Cr-stress by nonrhizospheric Pseudomonas strains. In: Abstract book of 7th international symposium on nitrogen fixation with non-legumes, Faisalabad, pp 36

    Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Article  Google Scholar 

  • Jee H-J (2009) Current status of bio-fertilizers and bio-pesticides development, farmer’s acceptance and their utilization in Korea, FFTC report

    Google Scholar 

  • Jida M, Assefa M (2011) Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr J Microbiol Res 5(24):4133–4142

    Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK, Bajpai VK, Kang SC (2006) Effect of chemical fertilizer-adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1, on Macrophomina phaseolina causing charcoal rot of Brassica juncea. Kor J Environ Agric 25(3):228–235

    Article  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophan in exudates of vegetables growing on stone wool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  PubMed  CAS  Google Scholar 

  • Kang SC, Pandey P, Khillon R, Maheshwari DK (2008) Process of rock phosphate solubilization by Aspergillus spp. PS 104 in soil amended medium. J Environ Biol 29(5):743–746

    PubMed  CAS  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  • Khorshidi YR, Ardakani MR, Ramezanpour MR, Khavazi K, Zargari K (2011) Response of yield and yield components of rice (Oryza sativa L.) to Pseudomonas fluorescens and Azospirillum lipoferum under different nitrogen levels. Am Eurasian J Agric Environ Sci 10(3):387–395

    Google Scholar 

  • Khurana AS, Sharma P (2000) Effect of dual inoculation of phosphate solubilizing bacteria, Bradyrhizobium sp. and phosphorus on nitrogen fixation and yield of chickpea. Indian J Pulses Res 13:66–67

    Google Scholar 

  • Kloepper JW, Zablokovicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, The Netherlands, pp 315–326

    Google Scholar 

  • Kloepper JW, Rodriguesz-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernandez D (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust Plant Pathol 28:21–26

    Article  Google Scholar 

  • Kumar VK, Raju SK, Reddy MS, Kloepper JW, Lawrence KS, Groth DE, Miller ME, Sudini H, Binghai D (2009a) Evaluation of commercially available PGPR for control of rice sheath blight caused by Rhizoctonia solani. J Pure Appl Microbiol 3(2):485–488

    Google Scholar 

  • Kumar S, Pandey P, Maheshwari DK (2009b) Reduction in dose of chemical fertilizers and growth enhancement of Sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur J Soil Biol 45:334–340

    Article  CAS  Google Scholar 

  • Kumar VK, Reddy MS, Kloepper JW, Lawrence KS, Zhou XG, Groth DE, Zhang S, Sudhakara Rao R, Wang Q, Raju MRB, Krishnam R, Dilantha Fernando WG, Sudini H, Du B, Miller ME (2011) Commercial potential of microbial inoculants for sheath blight management and yield enhancement of rice. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 237–264

    Chapter  Google Scholar 

  • Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaCl on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Kutyova TY, Durinina EP, Muravyova NE, Sheyko AV (2002) Microbal fertilizers Bamil, Omug, Ekud, Pudret their properties, influence on soil and crops. Herald of Moscow State University, Soil science series 4:40–46

    Google Scholar 

  • Lugtenberg BJJ, Kamilova FD (2004) Rhizosphere management: microbial manipulation for biocontrol. In: Goodman RM (ed) Encyclopedia of plant and crop science. Dekker, New York, pp 1098–1101

    Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2011) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Ind J Microbiol 50(4):425–431

    Article  Google Scholar 

  • Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28(10):3015–3024

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    Article  PubMed  CAS  Google Scholar 

  • Meunchang S, Thongra-ar P, Sanoh S, Kewsuralikhit S, Ando S (2006) Development of rhizobacteria as a biofertilizer for rice production. International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, 16–20 Oct 2006

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16:11–15

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Zakaria W, Marziah M (2009) The effect of rhizobacterial inoculation on growth and nutrient accumulation of tissue-cultured banana plantlets under low N-fertilizer regime. Afr J Biotechnol 8(21):5855–5866

    Google Scholar 

  • Naveed M, Khalid M, Jones DL, Ahmad R, Zahir ZA (2008) Relative efficacy of Pseudomonas spp., containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of organic fertilizer. Pak J Bot 40:1243–1251

    Google Scholar 

  • Nguyen TH (2008) The product BioGro and improvements in its performance. In: Kennedy IR, Choudhury ATMA, KecskĂ©s ML, Rose MT (eds) Efficient nutrient use in rice production in Vietnam achieved using inoculant biofertilisers. Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 Oct 2007, pp 15–24

    Google Scholar 

  • Nguyen TH, Deaker R, Kennedy IR, Roughley RJ (2003) The positive yield response of field grown rice to inoculation with a multi-strain biofertiliser in the Hanoi area, Vietnam. Symbiosis 35:231–245

    Google Scholar 

  • Niranjan R, Shetty HS, Reddy MS (2005) Plant growth-promoting rhizobacteria: potential green alternative for plant productivity. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 197–216

    Google Scholar 

  • Nosheen A, Bano A, Ullah F, Farooq U, Yasmin H, Hussain I (2011) Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.). Afr J Biotechnol 10(59):12669–12679

    Google Scholar 

  • Quyet-Tien P, Park YM, Seul KJ, Ryu C-M, Park SH, Kim JC, Chin SY (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20(12):1605–1613

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4(3):210–222

    CAS  Google Scholar 

  • Rashid A, Aslam M, Sajjad MR, Siddiqui G, Jami AR, Gill MA, Cheema MS, Sandhu MS, Asghar M, Nayyar MM (1997) Response of wheat to diazotrophic bacteria and nitrogen at different locations of Pakistan, Punjab area. In: Ahmad N, Hamid A (eds) Plant nutrition management for sustainable agriculture growth. NFDC, Islamabad

    Google Scholar 

  • Requena N, PĂ©rez-Solis E, AzcĂłn-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plantmicrobe symbiosis aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  PubMed  CAS  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Muhammadi G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eurasian J Agric Environ Sci 3(2):253–257

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Sahrawat KL (2000) Macro and micronutrients removed by upland and lowland rice cultivars in West Africa. Commun Soil Sci Plant Anal 31:717–723

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  PubMed  CAS  Google Scholar 

  • Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer, Berlin, pp 365–387

    Chapter  Google Scholar 

  • Shaharoona B, Jamroo GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J Microbiol Biotechnol 17:1300–1307

    PubMed  CAS  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irr Drain Sys 14:199–205

    Article  Google Scholar 

  • Sommers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modeling of PGPR inoculation into the rhizosphere. Env Mod Soft 21:1158–1171

    Article  Google Scholar 

  • Supanjani S, Habiba A, Mabooda F, Leea KD, Donnellya D, Smith DL (2006) Nod factor enhances calcium uptake by soybean. Plant Phys Biochem 44:866–872

    Article  CAS  Google Scholar 

  • Tomar RKS, Namdeo KN, Ranghu JS (1996) Efficacy of phosphate solubilizing bacteria-biofertilizers with phosphorus on growth and yield of gram (Cicer arietinum). Ind J Agron 41:412–415

    Google Scholar 

  • Ugoji EO, Laing MD, Hunter CH (2006) An investigation of the shelf-life (storage) of Bacillus isolates on seeds. South Afr J Bot 72:28–33

    Article  Google Scholar 

  • Ullmann WJ, Kirchman DL, Welch SA, Vandevivere P (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  Google Scholar 

  • Velagaleti RR, Marsh S (1989) Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119:133–138

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.). Int J Agric Res 5:148–156

    Article  CAS  Google Scholar 

  • Weller DM, Thomshow LS (1993) Use of rhizobacteria for biocontrol. Curr Opin Biotechnol 4:306–311

    Article  Google Scholar 

  • Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Hollingsworth PS, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum by trifolii and rice and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yasmin F, Othman R, Sijam K, Saad MS (2009) Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. Afr J Microbiol Res 3:815–821

    CAS  Google Scholar 

  • Young CC, Lai WA, Shen FT, Hung MH, Hung WS, Arun AB (2003) Exploring the microbial potentially to augment soil fertility in Taiwan. In: Proceedings of the 6th ESAFS international conference: soil management technology on low productivity and degraded soils, Taipei, Taiwan, pp 25–27

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    PubMed  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zhigletsova SK, Dunajtsev IA, Besaeva SG (2010) Possibility of application of microorganisms for solving problems of ecological and food safety. Agrochemical 6:83–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Adesemoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adesemoye, A.O., Egamberdieva, D. (2013). Beneficial Effects of Plant Growth-Promoting Rhizobacteria on Improved Crop Production: Prospects for Developing Economies. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_2

Download citation

Publish with us

Policies and ethics