Skip to main content

Interactions in Rhizosphere for Bioremediation of Heavy Metals

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Productivity
  • 1987 Accesses

Abstract

Contamination of soil by release of heavy metals from various industrial effluents, agrochemicals and other sources presents a major threat to the soil environment. Heavy metal compounds are difficult to degrade by biological processes and persist in the environment for a long time. The elevated concentration of heavy metals in soils adversely affects the growth of plants, microbial populations and symbiosis and, therefore, crop yields. Bioremediation techniques are often applied to clean up soil pollutants. Recent techniques used for removal of heavy metal pollution from soil include the use of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere, and their metabolic activities in bioremediation. In this review, we describe how heavy metals can be cleaned from the soil environment with the help of plant–microbe interaction. The plants also play a vital role in degradation of heavy metals. Exudates from the plant root help to stimulate the bacteria for survival and help in degradation of heavy metals in the environment. The plant root also helps the bacteria to spread and penetrate into the soil layers. Therefore, the bioremediation process stimulated in the rhizosphere is also referred as rhizoremediation. PGPR in association with plants roots provide beneficial effects on plant growth and also provide nutrition through mechanisms such as N2 fixation, phytohormone production and siderophores. The inoculation of soil with heavy metal-tolerant bacteria through the seeds of plants could be important and improve rhizoremediation techniques. The role of mycorrhiza and root exudates of host plants in the bioremediation process is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth U, Finlay RD (2001) Effect of elevated nickel and cadmium on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus silvestris seedlings. Plant Soil 236:128–138

    Article  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids. A review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Plant 37:730–741

    Article  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004a) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004b) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils. Using crops of metal-accumulating plants: a feasibility study. In: Hinchee RE, Olfenbuttel RF (eds) In situ bioreclamation. Butterworth-Heinemann, Stoneham, MA, p 539

    Google Scholar 

  • Banuelos GS (2000) Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant Soil 224(2):251–258

    Article  CAS  Google Scholar 

  • Banuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohouse S, Zambrzuski S (1993) Boron and selenium removal in boron laden soils by four sprinkler irrigated plant species. J Environ Qual 22:786–792

    Article  CAS  Google Scholar 

  • Barconi D, Bernardini G, Santucci A (2011) Linking protein oxidation to environmental pollutants: redox proteome approaches. J Proteomics 74(11):2324–2337

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuwenhoek 81:343–351

    Article  CAS  Google Scholar 

  • Barkay T, Miller S, Summers A (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S (2005) Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bingham FT, Pereyea FJ, Jarrell WM (1986) Metal toxicity to agricultural crops. Metal Ions Biol Syst 20:119–156

    CAS  Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Prospect 103(12):1106–1108

    Article  CAS  Google Scholar 

  • Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 6:1153–1166

    Article  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening of plant growth promoting rhizobacteria (PGPR) to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarium biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of organic waste constituents. In: Parr JF et al (eds) Land treatment of hazardous wastes. Noyes Data, Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Chaney RL, Brown SL, Li YM (2000) Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils. In: Proceedings of US-EPA conference on phytoremediation: state of the science, 1–2 May 2000, Boston, MA. US EPA, Cincinnati, OH, pp 164–185

    Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation – focusing on accumulator plants that remediate metalcontaminated soils. Australas J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Poll Res 12:34–48

    Article  CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Rietz E, Sauerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biol Biochem 25:301

    Article  CAS  Google Scholar 

  • Chen X, Wu CH, Tang JJ, Hu SJ (2005) Arbuscular mycorrhizae enhance metal uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–671

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18(3):317–325

    Article  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  PubMed  CAS  Google Scholar 

  • Colbet C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119(2):565–573

    Article  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • Deikman J (1997) Molecular mechanisms of ethylene regulation of gene transcription. Physiol Plant 100:561–566

    Article  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity – a review. Plant Soil Environ 53:193–200

    CAS  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC, Boca Raton, FL, pp 177–203

    Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001) Effects and risk assessment of linear alkyl benzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20(8):1656–1663

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2005) Bacterial Cr (VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  PubMed  CAS  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88(2):689–712

    Article  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566

    Article  CAS  Google Scholar 

  • Furukawa K (2003) Super bugs for bioremediation. Trends Biotechnol 21:187–190

    Article  PubMed  CAS  Google Scholar 

  • Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92(2):364–368

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glanze WD (1996) Mosby medical encyclopedia, revised edition. St. the phytosiderophore secretion under Fe-deficient conditions, in Gramineae. J Exp Bot 45(12):1903–1906

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 25:5973–5977

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184(2):195–205

    Article  CAS  Google Scholar 

  • Gupta A, Meyer JM, Goel R (2002) Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Curr Microbiol 45:323–332

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Ravi V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent Pseudomonads. Microbiol Res 160:385–388

    Article  PubMed  CAS  Google Scholar 

  • Hall JA (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Isr J Plant Sci 44:37–42

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133

    Article  PubMed  CAS  Google Scholar 

  • Heggo A, Angle A, Chaney RL (1990) Effects of vesicular arbuscular mycorrhizal fungi on heavy metal uptake of soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury, NNEMS report. US EPA, Washington, DC, pp 3–9

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Article  PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Uber neure Erfahrungen und probleme auf dem gebeit der bodenback-teriologie und unter besonderer berucksichtigung der grundungung und brache. Arb Deut Landwirsch Ges 98:59–78

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Hobman JL, Brown NL (1997) Bacterial mercury resistance genes. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 34. Dekker, New York, pp 527–568

    Google Scholar 

  • Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals 2005:429–436

    Article  CAS  Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73(9):2007–2013

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Fujita M (2011) Regulatory role of components of ascorbate-glutathione (AsA-GSH) pathway in plant tolerance to oxidative stress. In: Anjum NA, Umar S, Ahmed A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International, New Delhi

    Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of m ethylglyoxal level and glyoxalaseI activity in pumpkin seedlings and cDNA cloning of glyoxalaseI gene. Aust J Crop Sci 3(2):53–64

    CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Upregulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16(3):259–272

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012a) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. doi:10.1155/2012/872875

    Google Scholar 

  • Hossain MA, Hossain MD, Rohman MM, daSilva JAT, Fujita M (2012b) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. In: Aguirre CB, Jaramillo LM (eds) Onion consumption and health. Nova Science, New York, NY

    Google Scholar 

  • Huang Y, Chen Y, Tao S (2002) Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation changes in rhizosphere. Chin J Appl Ecol 13:859–862

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004a) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  PubMed  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004b) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  PubMed  CAS  Google Scholar 

  • Huang XD (2004c) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Tao S, Chen YJ (2005a) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17(2):276–280

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005b) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance Zn and nickel uptake from contaminated soil by soybean and lentil. Int J Phytoremed 4:205–221

    Article  CAS  Google Scholar 

  • Jentschke G, Marschner P, Vodnik D, Marth C, Bredemeier M, Rapp C, Fritz E, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizaes. J Plant Physiol 153:97–104

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soil 33:351–357

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jung C, Maeder V, Funk F, Frey B, Sticher H, Frossard E (2003) Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil 252:301–312

    Article  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Article  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  PubMed  CAS  Google Scholar 

  • Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Bae H, Jeong J, Lee J-Y, Yang Y-Y, Hwang I, Martinoia E, Lee Y (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3):139–153

    Article  CAS  Google Scholar 

  • Liao M, Xie XM (2004) Cadmium release in contaminated soils due to organic acids. Pedosphere 14:223–228

    CAS  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel H-G (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    PubMed  CAS  Google Scholar 

  • Lin Q, Zheng CR, Chen HM, Chen YX (1998) Transformation of cadmium species in rhizosphere. Acta Pedol Sin 35:461–467

    CAS  Google Scholar 

  • Lin Q, Chen YX, Chen HM, Zheng CM (2003) Study on chemical behavior of root exudates with heavy metals. Plant Nutr Fertil Sci 9:425–431

    Google Scholar 

  • Lloyd JR, Macaskie LE (2000) Bioremediation of radioactive metals. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM, Washington, DC, pp 277–327

    Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Ant Leeuw 81:373–383

    Article  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Matsumot H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  PubMed  CAS  Google Scholar 

  • Manara A (2010) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer, Berlin, pp 27–53

    Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AOSS, Castro PML (2007a) Solanum nigrum in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699

    Article  PubMed  CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Rangel AOSS, Pissarra J, Castro PML (2007b) EDDS and EDTA-enhanced zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi grown in contaminated soil. Chemosphere 70:1002–1014

    Article  PubMed  CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232(1–2):207–214

    Article  CAS  Google Scholar 

  • Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132:187–196

    CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Mueller B, Rock S, Gowswami Dib, Ensley D (1999) Phytoremediation decision tree. Interstate Technology and Regulatory Cooperation Workgroup, ITRC, Washington, DC

    Google Scholar 

  • Nanda Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Navari-Izzo F (1998) Thylakoid-bound and stromal antioxidativeenzymes in wheat treated with excess copper. Physiol Planta 104(4):630–638

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  PubMed  CAS  Google Scholar 

  • Nies D, Mergeay M, Friedrich B, Schelegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    PubMed  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1989a) Cloning and expession of plasmid genes encoding resistance to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070

    PubMed  CAS  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989b) Expression and nucleotide sequence of a plasmid determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    Article  PubMed  CAS  Google Scholar 

  • Normander B, Hendriksen NB, Nybroe O (1999) Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl Environ Microbiol 65:4646–4651

    PubMed  CAS  Google Scholar 

  • Ouziad F, Hildebrandt F, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal colonized tomato grown under heavy metal stress. J Plant Physiol 162(6):634–649

    Article  PubMed  CAS  Google Scholar 

  • Pate JS, Verboom WH (2009) Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept. Ann Bot 103:673–685

    Article  PubMed  Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560

    Article  CAS  Google Scholar 

  • Penella MA, Giedroc DP (2005) Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals 18:413–428

    Article  CAS  Google Scholar 

  • Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnol 13(1):55–63

    Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr (vi) on the growth of Indian mustard. Chemosphere 62:741–748

    Article  PubMed  CAS  Google Scholar 

  • Ramesh G (2008) Cloning and characterization of metallothione in genes of ectomycorrhizal fungus Hebeloma cylindrosporum. PhD Thesis, Thapar University, Punjab, India

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  PubMed  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas M, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25(5):677–686

    Article  CAS  Google Scholar 

  • Rouch DA, Brown NL (1997) Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143(4):1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Safronova VI (2006) Root associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soil 42:267–272

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance inaccumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 189–200

    Google Scholar 

  • San Francisco MJD, Hope CL, Owolabi JB, Tisa LS, Rosen BP (1990) Identification of the metalloregulatory element of the plasmidencoded arsenical resistance operon. Nucl Acid Res 18:619–624

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed-borne fungal endophyte. Annu Rev Plant Biol 55:315–340

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  PubMed  CAS  Google Scholar 

  • Schwab AP, He YH, Banks MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866

    Article  PubMed  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seed-ling s exposed to toxic concentrations of aluminum. Plant Cell Rep 26(11):2027–2038

    Article  PubMed  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco over expressing glyoxalase pathway enzymes g row and set viable seeds in zinc-spiked soils. Plant Physiol 140(2):613–623

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Plant Growth Regul 25(1):71

    Google Scholar 

  • Summers AO (1992) Untwist and shout – a heavy metal responsive transcriptional regulator. J Bacteriol 174:3097–3101

    PubMed  CAS  Google Scholar 

  • Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature induced mutagenesis and mortality. Plasmid 37:22–34

    Article  PubMed  CAS  Google Scholar 

  • Tan YF, O’Toole N, Taylor NL, Millar AH (2010) Divalent metal ions in plant mitochondria and their role in inter actions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152(2):747–761

    Article  PubMed  CAS  Google Scholar 

  • Taylor LL, Leake JR, Quirk J, Hardy K, Banwarts SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil interface. Dekker, New York, pp 19–40

    Google Scholar 

  • Vicre M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138:998–1008

    Article  PubMed  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  PubMed  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 52:1523–1533

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 167:189–196

    Article  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 273–303

    Chapter  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58

    PubMed  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006a) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006b) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47(9):1025–1035

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    PubMed  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtillis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  PubMed  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nevita, T., Pandey, P., Maheshwari, D.K., Sood, A. (2013). Interactions in Rhizosphere for Bioremediation of Heavy Metals. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_18

Download citation

Publish with us

Policies and ethics