Skip to main content

Induction of Plant Defense Response and Its Impact on Productivity

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Productivity

Abstract

Plants encounter a wide variety of biotic agents, including bacterial pathogens that infect plant tissues and compromise plant survival. To protect themselves, plants have evolved mechanisms that specifically recognize pathogens and induce appropriate defense responses, such as the synthesis of cell wall reinforcement molecules, pathogen-degrading enzymes, and antimicrobial compounds. While expression of induced defenses is highly effective against most pathogens, it represents an energy-demanding process that can divert resources away from growth and yield. As a result, the constitutive expression of defense responses does not represent an efficient strategy to protect plants from disease, as it generally alters plant productivity and fitness. However, it is possible to potentiate plant defense responses by a first infection or selected treatment in a process known as priming. Primed plants can respond faster and more strongly to a secondary infection and will express enhanced resistance to various pathogens. As priming does not involve the constitutive expression of defense responses, this could represent a cost-effective mechanism for the induction of basal resistance against several plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Gordon-Weeks R, Pickett J, Ton J (2010) Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Mol Plant Pathol 11:817–827

    PubMed  Google Scholar 

  • Alcázar R, Reymond M, Schmitz G, de Meaux J (2011) Genetic and evolutionary perspectives on the interplay between plant immunity and development. Curr Opin Plant Biol 14:378–384

    Article  PubMed  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Z (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2:106–113

    Article  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  PubMed  CAS  Google Scholar 

  • Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  PubMed  Google Scholar 

  • Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  PubMed  CAS  Google Scholar 

  • Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004) Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 122:419–428

    Article  CAS  Google Scholar 

  • Block A, Li G, Fu ZQ, Alfano JR (2008) Phytopathogen type III effector weaponry and their plant targets. Curr Opin Plant Biol 11:396–403

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  PubMed  CAS  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense–fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    PubMed  CAS  Google Scholar 

  • Brown JK (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:339–344

    Article  PubMed  CAS  Google Scholar 

  • Brown JK (2003) A cost of disease resistance: paradigm or peculiarity? Trends Genet 19:667–671

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Carviel JL, Al-Daoud F, Neumann M, Mohammad A, Provart NJ, Moeder W, Yoshioka K, Cameron RK (2009) Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pathol 10:621–634

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Shan L, He P, de Vries S, Kemmerling B (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 14:535–541

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 5:1–25

    Google Scholar 

  • Clarke JD, Liu Y, Klessig DF, Dong X (1998) Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10:557–569

    PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  PubMed  CAS  Google Scholar 

  • Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses, Chap 9. In: Loon LCV (ed) Advances in botanical research. Academic, London, pp 361–395

    Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4:309–314

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–1033

    PubMed  CAS  Google Scholar 

  • FAO (2005) Status of research and application of crop biotechnologies in developing countries. FAO, Rome. http://www.fao.org/docrep/008/y5800e/y5800e00.htm

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278:6201–6208

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    Article  PubMed  CAS  Google Scholar 

  • Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF (2008) Signaling pathways that regulate the enhanced disease resistance of Arabidopsisdefense, no death” mutants. Mol Plant Microbe Interact 21:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Geraats BP, Bakker PA, Lawrence CB, Achuo EA, Hofte M, van Loon LC (2003) Ethylene-insensitive tobacco shows differentially altered susceptibility to different pathogens. Phytopathology 93:813–821

    Article  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449

    Article  PubMed  CAS  Google Scholar 

  • Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Gotz F, Glawischnig E, Lee J, Felix G, Nurnberger T (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282:32338–32348

    Article  PubMed  CAS  Google Scholar 

  • Hamel LP, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232:787–806

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  PubMed  CAS  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhansel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Katagiri F (2004) A global view of defense gene expression regulation–a highly interconnected signaling network. Curr Opin Plant Biol 7:506–511

    Article  PubMed  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  PubMed  CAS  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  PubMed  CAS  Google Scholar 

  • Major IT, Nicole MC, Duplessis S, Seguin A (2010) Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynth Res 104:41–48

    Article  PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  PubMed  CAS  Google Scholar 

  • March-Diaz R, Garcia-Dominguez M, Lozano-Juste J, Leon J, Florencio FJ, Reyes JC (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53:475–487

    Article  PubMed  CAS  Google Scholar 

  • Mazars C, Thuleau P, Lamotte O, Bourque S (2010) Cross-talk between ROS and calcium in regulation of nuclear activities. Mol Plant 3:706–718

    Article  PubMed  CAS  Google Scholar 

  • Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485–498

    Article  PubMed  Google Scholar 

  • Meyer A, Puhler A, Niehaus K (2001) The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213:214–222

    Article  PubMed  CAS  Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–990

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    Article  PubMed  CAS  Google Scholar 

  • Newman MA, Daniels MJ, Dow JM (1995) Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol Plant Microbe Interact 8:778–780

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  CAS  Google Scholar 

  • Roden LC, Ingle RA (2009) Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21:2546–2552

    Article  PubMed  CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  PubMed  CAS  Google Scholar 

  • Rusterucci C, Zhao Z, Haines K, Mellersh D, Neumann M, Cameron RK (2005) Age-related resistance to Pseudomonas syringae pv. tomato is associated with the transition to flowering in Arabidopsis and is effective against Peronospora parasitica. Physiol Mol Plant Pathol 66:222–231

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Schulze B, Mentzel T, Jehle A, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 26:9444–9451

    Article  Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  PubMed  CAS  Google Scholar 

  • Shah J, Kachroo P, Klessig DF (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11:191–206

    PubMed  CAS  Google Scholar 

  • Shah J, Kachroo P, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–574

    Article  PubMed  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  PubMed  CAS  Google Scholar 

  • Somssich IE (2007) Networks of transcriptional regulation underlying plant defense responses toward phytopathogens. In: Grasser KD (ed) Annual plant reviews, vol 29, Regulation of transcription in plants. Blackwell, Oxford, pp 266–284

    Google Scholar 

  • Soto MJ, Dominguez-Ferreras A, Perez-Mendoza D, Sanjuan J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  PubMed  CAS  Google Scholar 

  • Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK (2011) Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Mol Plant Pathol 12:855–865

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  PubMed  CAS  Google Scholar 

  • Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B (2005) Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  PubMed  CAS  Google Scholar 

  • Van den Burg HA, Takken FL (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286–294

    Article  PubMed  Google Scholar 

  • Van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed  Google Scholar 

  • Van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  Google Scholar 

  • Van Hulten M, Ton J, Pieterse CMJ, Wees SCM (2010) Plant defense signaling from the underground primes aboveground defenses to confer enhanced resistance in a cost-efficient manner. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 43–60

    Chapter  Google Scholar 

  • Van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17

    Article  CAS  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53:144–156

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L.-P. Hamel is the recipient of a postdoctoral fellowship from the Fonds Québécois de la Recherche sur la Nature et la Technologie (FQRNT). We apologize to our colleagues whose work could not be cited here due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Beaudoin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamel, LP., Beaudoin, N. (2013). Induction of Plant Defense Response and Its Impact on Productivity. In: Maheshwari, D., Saraf, M., Aeron, A. (eds) Bacteria in Agrobiology: Crop Productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_13

Download citation

Publish with us

Policies and ethics