Skip to main content

Toward Turing’s A-Type Unorganised Machines in an Unconventional Substrate: A Dynamic Representation in Compartmentalised Excitable Chemical Media

  • Chapter
Computing Nature

Abstract

Turing presented a general representation scheme by which to achieve artificial intelligence – unorganised machines. Significantly, these were a form of discrete dynamical system and yet such representations remain relatively unexplored. Further, at the same time as also suggesting that natural evolution may provide inspiration for search mechanisms to design machines, he noted that mechanisms inspired by the social aspects of learning may prove useful. This paper presents initial results from consideration of using Turing’s dynamical representation within an unconventional substrate - networks of Belousov-Zhabotinsky vesicles - designed by an imitation-based, i.e., cultural, approach. Turing’s representation scheme is also extended to include a fuller set of Boolean functions at the nodes of the recurrent networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A. (ed.): Collision-based Computing. Springer, London (2002)

    MATH  Google Scholar 

  2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier (2005)

    Google Scholar 

  3. Adamatzky, A., Holley, J., Bull, L., De Lacy Costello, B.: On Computing in Fine-grained Compartmentalised Belousov–Zhabotinsky Medium. Chaos, Solitons & Fractals 44(10), 779–790 (2011)

    Article  Google Scholar 

  4. Adamatzky, A., De Lacy Costello, B., Holley, J., Gorecki, J., Bull, L.: Vesicle computers: Approximating a Voronoi diagram using Voronoi automata. Chaos Solitons and Fractals 44, 480–489 (2011)

    Article  Google Scholar 

  5. Agladze, K., Aliev, R.R., Yamaguhi, T., Yoshikawa, K.: Chemical diode. Journal of Physical Chemistry 100, 13895–13897 (1996)

    Article  Google Scholar 

  6. Ashby, W.R.: Design for a Brain. Wiley, New York (1954)

    Google Scholar 

  7. Bar-Eli, K., Reuveni, S.: Stable stationary-states of coupled chemical oscillators: Experimental evidence. Journal of Physical Chemistry 89, 1329–1330 (1985)

    Article  Google Scholar 

  8. Bull, L.: Using Genetical and Cultural Search to Design Unorganised Machines. Evolutionary Intelligence 5(1) (2012)

    Google Scholar 

  9. Bull, L., Budd, A., Stone, C., Uroukov, I., De Lacy Costello, B., Adamatzky, A.: Towards Unconventional Computing Through Simulated Evolution: Learning Classifier System Control of Non-Linear Media. Artificial Life 14(2), 203–222 (2008)

    Article  Google Scholar 

  10. Copeland, J., Proudfoot, D.: On Alan Turing’s Anticipation of Connectionism. Synthese 108, 361–377 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crowley, M.F., Field, R.J.: Electrically coupled Belousov-Zhabotinskii oscillators 1: Experiments and simulations. Journal of Physical Chemistry 90, 1907–1915 (1986)

    Article  Google Scholar 

  12. Dawkins, R.: The Selfish Gene. Oxford Press, Oxford (1976)

    Google Scholar 

  13. Dolnik, M., Epstein, I.R.: Coupled chaotic oscillators. Physical Review E 54, 3361–3368 (1996)

    Article  Google Scholar 

  14. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through A Simulation of Evolution. In: Maxfield, M., et al. (eds.) Biophysics and Cybernetic Systems: Proceedings of the 2nd Cybernetic Sciences Symposium, pp. 131–155. Spartan Books (1965)

    Google Scholar 

  15. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. Journal of Physical Chemistry A 107, 1664–1669 (2003)

    Article  Google Scholar 

  16. Hjelmfelt, A., Ross, J.: Mass-coupled chemical systems with computational properties. Journal of Physical Chemistry 97, 7988–7992 (1993)

    Article  Google Scholar 

  17. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and Turing machines. PNAS 88, 10983–10987 (1991)

    Article  MATH  Google Scholar 

  18. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Mich. Press (1975)

    Google Scholar 

  19. Holley, J., Adamatzky, A., Bull, L., De Lacy Costello, B., Jahan, I.: Computational modalities of Belousov-Zhabotinsky encapsulated vesicles. Nano Communication Networks 2, 50–61 (2011)

    Article  Google Scholar 

  20. Holley, J., Jahan, I., De Lacy Costello, B., Bull, L., Adamatzky, A.: Logical and Arithmetic Circuits in Belousov Zhabotinsky Encapsulated Discs. Physical Review E 84, 56110 (2011)

    Article  Google Scholar 

  21. Holz, R., Schneider, F.W.: Control of dynamic states with time-delay between 2 mutually flow-rate coupled reactors. Journal of Physical Chemistry 97, 12239 (1993)

    Article  Google Scholar 

  22. Kauffman, S.A.: Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  23. Kauffman, S.A.: The Origins of Order. Oxford Press, Oxford (1993)

    Google Scholar 

  24. Kawato, M., Suzuki, R.: Two coupled neural oscillators as a model of the circadian pacemaker. Journal of Theoretical Biology 86, 547–575 (1980)

    Article  MathSciNet  Google Scholar 

  25. King, P.H., Corsi, J.C., Pan, B.-H., Morgan, H., de Planque, M.R., Zauner, K.-P.: Towards molecular computing: Co-development of microfluidic devices and chemical reaction media. Biosystems (2012)

    Google Scholar 

  26. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light sensitive chemical waves. Nature 337, 244–247 (1989)

    Article  Google Scholar 

  27. Laplante, J.P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition by chemical kinetics. Journal of Physical Chemistry 99, 10063–10065 (1995)

    Article  Google Scholar 

  28. Lebender, D., Schneider, F.W.: Logical gates using a nonlinear chemical reaction. Journal of Physical Chemistry 98, 7533–7537 (1994)

    Article  Google Scholar 

  29. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mesot, B., Teuscher, C.: Deducing Local Rules for Solving Global Tasks with Random Boolean Networks. Physica D 211(1-2), 88–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real time memory on an excitable field. Physical Review E 63, 1–4 (2001)

    Article  Google Scholar 

  32. Sielewiesiuk, J., Gorecki, J.: Passive barrier as a transformer of chemical frequency. Journal of Physical Chemistry A 106, 4068–4076 (2002)

    Article  Google Scholar 

  33. Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths: Optimal paths from chemical waves. Science 267, 868–871 (1995)

    Article  Google Scholar 

  34. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. Journal of Physical Chemistry 100, 18970–18975 (1996)

    Article  Google Scholar 

  35. Stuchl, I., Marek, M.: Dissipative structures in coupled cells: Experiments. Journal of Physical Chemistry 77, 2956–2963 (1982)

    Article  Google Scholar 

  36. Teuscher, C.: Turing’s Connectionism. Springer, London (2002)

    Book  Google Scholar 

  37. Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A., Bull, L.: Dynamic Control and Information Processing in the Belousov-Zhabotinsky Reaction using a Co-evolutionary Algorithm. Journal of Chemical Physics 129, 184708 (2008)

    Article  Google Scholar 

  38. Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A., Bull, L.: Simple Collision-based Chemical Logic Gates with Adaptive Computing. Journal of Nanotechnology and Molecular Computation 1(3), 1–16 (2009)

    Article  Google Scholar 

  39. Turing, A.: Intelligent Machinery. In: Evans, C.R., Robertson, A. (eds.) Key Papers: Cybernetics, Butterworths, pp. 91–102 (1968)

    Google Scholar 

  40. Turing, A.: The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72 (1952)

    Article  Google Scholar 

  41. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)

    Google Scholar 

  42. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Bull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bull, L., Holley, J., De Lacy Costello, B., Adamatzky, A. (2013). Toward Turing’s A-Type Unorganised Machines in an Unconventional Substrate: A Dynamic Representation in Compartmentalised Excitable Chemical Media. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Computing Nature. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37225-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37225-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37224-7

  • Online ISBN: 978-3-642-37225-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics