Skip to main content

Salient Features and Snapshots in Time: An Interdisciplinary Perspective on Object Representation

  • Chapter
Computing Nature

Abstract

Faced with a vast, dynamic environment, some animals and robots often need to acquire and segregate information about objects. The form of their internal representation depends on how the information is utilised. Sometimes it should be compressed and abstracted from the original, often complex, sensory information, so it can be efficiently stored and manipulated, for deriving interpretations, causal relationships, functions or affordances. We discuss how salient features of objects can be used to generate compact representations, later allowing for relatively accurate reconstructions and reasoning. Particular moments in the course of an object-related process can be selected and stored as ‘key frames’. Specifically, we consider the problem of representing and reasoning about a deformable object from the viewpoint of both an artificial and a natural agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chappell, J., Sloman, A.: Natural and artificial meta-configured altricial information-processing systems. International Journal of Unconventional Computing 3(3), 211–239 (2007)

    Google Scholar 

  2. Calvo, P., Gomila, T. (eds.): Handbook of cognitive science: An embodied approach. Elsevier, London (2008)

    Google Scholar 

  3. White, R.W.: Motivation reconsidered: The concept of competence. Psychological Review 66(5), 297–333 (1959)

    Article  Google Scholar 

  4. Schulz, L., Sommerville, J.: God does not play dice: Causal determinism and preschoolers’ causal inferences. Child Development 77(2), 427–442 (2006)

    Article  Google Scholar 

  5. Thomas, R.: Investigating cognitive abilities in animals: unrealized potential. Cognitive Brain Research 3(3-4), 157–166 (1996)

    Article  Google Scholar 

  6. Visalberghi, E., Tomasello, M.: Primate causal understanding in the physical and psychological domains. Behavioural Processes 42, 189–203 (1997)

    Article  Google Scholar 

  7. McCrone, J.: Smarter than the average bug. New Scientist 190(2553), 37–39 (2006)

    Google Scholar 

  8. Demery, Z.P., Chappell, J., Martin, G.R.: Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus. Proceedings of the Royal Society B 278(1725), 3687–3693 (2011)

    Article  Google Scholar 

  9. Markram, H.: The blue brain project. Nature Reviews Neuroscience 7(2), 153–160 (2006)

    Article  MathSciNet  Google Scholar 

  10. Demery, Z., Arriola-Rios, V.E., Sloman, A., Wyatt, J., Chappell, J.: Construct to understand: learning through exploration. In: Proceedings of the International Symposium on AI-Inspired Biology, pp. 59–61 (2010)

    Google Scholar 

  11. Mesulam, M.: From sensation to cognition. Brain 121, 1013–1052 (1998)

    Article  Google Scholar 

  12. Shaw, J.M.: Unifiying Perception and Curiosity. PhD thesis, University of Rochester, Department of Computer Science, The College Arts and Sciences. Rochester, New York (2006); Supervised by Professor Dana H. Ballard

    Google Scholar 

  13. Chappell, J., Demery, Z.P., Arriola-Rios, V., Sloman, A.: How to build an information gathering and processing system: Lessons from naturally and artificially intelligent systems. Behavioural Processes 89(2), 179–186 (2012)

    Article  Google Scholar 

  14. Arriola, V.E., Savage, J.: Knowledge Acquisition and Automatic Generation of Rules for the Inference Machine CLIPS. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 725–735. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Karmiloff-Smith, A.: Beyond Modularity: a developmental perspective on cognitive science. MIT Press, Cambridge (1999)

    Google Scholar 

  16. von Bayern, A.M., Heathcote, R.J., Rutz, C., Kacelnik, A.: The role of experience in problem solving and innovative tool use in crows. Current Biology 19(22), 1965–1968 (2009)

    Article  Google Scholar 

  17. Minsky, M.: A framework for representing knowledge. In: Winston, P. (ed.) The Psychology of Computer Vision, p. 81. McGraw-Hill, NY (1975)

    Google Scholar 

  18. Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing 19(14), 1023–1040 (2001)

    Article  Google Scholar 

  19. Barber, B.: How to Draw Everything. Arcturus (2009)

    Google Scholar 

  20. Hoffmann, C.M., Rossignac, J.R.: A road map to solid modeling. IEEE Transactions on Visualization and Computer Graphics 2, 3–10 (1996)

    Article  Google Scholar 

  21. Siskind, J.M.: Grounding language in perception. Artificial Intelligence Review 8, 371–391 (1994)

    Article  Google Scholar 

  22. Parent, R. (ed.): Computer Animation. Morgan Kaufmann (2009)

    Google Scholar 

  23. Menache, A.: Understanding Motion Capture for Computer Animation. Elsevier, London (2011)

    Google Scholar 

  24. Teschner, M., Heidelberg, B., Muller, M., Gross, M.: A versatile and robust model for geometrically complex deformable solids. In: Proceedings of Computer Graphics International (CGI 2004), pp. 312–319 (2004)

    Google Scholar 

  25. Steels, L.: The symbol grounding problem has been solved. so what’s next? In: de Vega, M. (ed.) Symbols and Embodiment: Debates on Meaning and Cognition, Oxford University Press, Oxford (2008)

    Google Scholar 

  26. Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 483–496. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  28. Morris, D., Salisbury, K.: Automatic preparation, calibration, and simulation of deformable objects. Computer Methods In Biomechanics And Biomedical Engineering 11(3), 263–279 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica E. Arriola-Rios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arriola-Rios, V.E., Demery, Z.P., Wyatt, J., Sloman, A., Chappell, J. (2013). Salient Features and Snapshots in Time: An Interdisciplinary Perspective on Object Representation. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Computing Nature. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37225-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37225-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37224-7

  • Online ISBN: 978-3-642-37225-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics