Advertisement

Zenith Wet Delay Retrieval Using Two Different Techniques for the South American Region and Their Comparison

  • A. Calori
  • G. Colosimo
  • M. Crespi
  • F. Azpilicueta
  • M. Gende
  • C. Brunini
  • M. V. Mackern
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

Retrieving atmospheric water vapor content using GNSS claimed the attention of the geodetic community ever since the beginning of the GPS deployment. The main purpose of the present work is to propose a comparison of the Zenith Wet Delay (ZWD) retrieved by GPS with the direct measurements provided by the water vapor radiometer loaded on-board the Jason-1 altimetry satellite and those obtained from SIRGAS (Geocentric Reference System for the Americas) GNSS reference stations. In this respect, the work proposes a methodology for the comparison and contributes to assess the capabilities of SIRGAS permanent network to provide water vapor informations that can be useful both for short-term weather forecasting and for long-term climate studies. For the period from June 2008 to June 2010 the tropospheric parameters of more than 100 SIRGAS stations were estimated using Bernese 5.0 software with a time interval of 15 min. Since Jason-1 returns reliable measurements only over open ocean areas, a subset of 14 stations located along the coastline was selected for the comparison. A dedicated software was developed in order to effectively manage the huge amount of Jason-1 data, mainly devoted to data selection according to site position, time interval and data filtering using quality flag indicators. The Zenith Hydrostatic Delay (ZHD) provided by the European Center for Medium Weather Forecasting (ECMWF) were first corrected up to the GPS station height and then used to derive the ZWD from the GPS estimated Zenith Total Delay (ZTD). The agreement between the techniques was evaluated in terms of bias and standard deviation of the differences (i.e. GPS ZWD − Jason-1 ZWD ) resulting in 7.4 mm and 15.4 mm, respectively. The average correlation coefficient is 0.93.

Keywords

Zenith wet delay retrieval GNSS Jason-1 radiometer SIRGAS permanent network 

Notes

Acknowledgements

We thank all the Reviewers for their valuable suggestions that helped improving the present research. This work was partially supported by Progetto di cooperazione Scientifica e Tecnologica Italia-Argentina 2011–2013.

References

  1. Berg H (1948) Allgemeine meteorologie. Duemmler, BonnGoogle Scholar
  2. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of the atmospheric water vapor using the Global Positioning System. J Geophys Res 97:15787–15801CrossRefGoogle Scholar
  3. Bock O, Willis P, Lacarra M, Bosser P (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv Space Res 46(10):1648–1660CrossRefGoogle Scholar
  4. Bonafoni S, Mazzoni A, Cimini D, Montopoli M et al (2012) Assessment of water vapor retrievals from a GPS receiver network. GPS Solut. doi:10.1007/s10291-012-0293-5Google Scholar
  5. Brunini C, Sánchez L, Drewes H, Costa S, Mackern V, Martínez W et al (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. In: IAG symposia, 2012, vol 136, Part 1, pp 3–10Google Scholar
  6. Buyn S, Bar-Sever Y (2009) A new type of troposphere zenith path delay product of the International GNSS service. J Geodes 83:367–373. doi:10.1007/s00190-008-0288-8Google Scholar
  7. Dach R, Hugentobler H, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0, User manual. Astronomical Institute, University of Bern, BernGoogle Scholar
  8. Davis JL, Herring TA, Shapiro II et al (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607CrossRefGoogle Scholar
  9. Desai SD, Haines BJ (2004) Monitoring measurements from the Jason-1 microwave radiometer and independent validation with GPS. Mar Geodes 27:221–240CrossRefGoogle Scholar
  10. Duan J, Bevis M, Fang P, Bock Y, Chiswell S et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35:830–838CrossRefGoogle Scholar
  11. Edwards S, Moore P, King M (2004) Assessment of the Jason-1 and TOPEX/Poseidon microwave radiometer performance using GPS from offshore sites in the North sea. Mar Geodes 27: 717–727CrossRefGoogle Scholar
  12. Fernández LI, Salio P, Natali MP, Meza AM (2010) Estimation of precipitable water vapor from GPS measurements in Argentina. Validation and quantitative analysis of results. Adv Space Res 46:879–894CrossRefGoogle Scholar
  13. Haines BJ, Bar-Sever Y (1998) Monitoring the TOPEX microwave radiometer with GPS: stability of columnar water vapor measurements. Geo Res Lett 25:3563–3566CrossRefGoogle Scholar
  14. Kehim S, Janssen M, Ruf C (1995) TOPEX/Poseidon microwave radiometer (TMR): III. Wet troposphere range correction algorithm and pre-launch error budget. IEEE Trans Geosci Remote Sens 33(1):147–161Google Scholar
  15. Kouba J (2008) Implementing and testing of the gridded Vienna Mapping Function 1 (VMF1). J Geodes 82:193–205CrossRefGoogle Scholar
  16. Mackern MV, Mateo ML, Robin AM, Calori AV (2009) A terrestrial reference frame, coordinates and velocities for South American stations: contributions to Central Andes geodynamics. Adv Geosci 22:181–184CrossRefGoogle Scholar
  17. Mitchell JFB (1989) The greenhouse effect and climate change. Rev Geophys 27:115–139CrossRefGoogle Scholar
  18. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  19. Perler D, Geiger A, Hurter F (2011) 4D GPS water vapor tomography: new parameterized approaches. J Geodes 85:539–550. doi:10.1007/s00190-011-0454-2CrossRefGoogle Scholar
  20. Picot N, Case K, Desai S, Vincent P (2003) AVISO and PODAAC user handbook. IGDR and GDR Jason Products, SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC)Google Scholar
  21. Rocken C, Van Hove T, Johnson J, Solheim F et al (1995) GPS/STORM: GPS sensing of atmospheric water vapor for meteorology. J Atmos Ocean Technol 12:468–478CrossRefGoogle Scholar
  22. Ruf CS, Keihm SJ, Subramanya B, Janssen MA (1994) TOPEX/POSEIDON microwave radiometer performance and in-flight calibration. J Geophys Res 99:24915–24926CrossRefGoogle Scholar
  23. Saastamoinen II (1973) Contribution to the theory of atmospheric refraction. Bull Géodésique 107:13–34CrossRefGoogle Scholar
  24. Sapucci LF, Machado LAT, Monico JFG, Plana-Fattori A (2007) Intercomparison of Integrated Water Vapor estimates from multisensors in the Amazonian region. J Atmos Ocean Technol 24:1880–1894CrossRefGoogle Scholar
  25. Teke K, Böhm, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinckelmann R, Willis P, Haas R et al (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geodes 85:395–413CrossRefGoogle Scholar
  26. Tregoning P, Boers R, O Brien D (1998) Accuracy of absolute precipitable water vapor estimates from GPS observations. J Geophys Res 103:28701–28710Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Calori
    • 1
  • G. Colosimo
    • 2
  • M. Crespi
    • 2
  • F. Azpilicueta
    • 3
  • M. Gende
    • 3
  • C. Brunini
    • 3
  • M. V. Mackern
    • 1
  1. 1.Facultad de IngenieríaUniversidad Nacional de CuyoMendozaArgentina
  2. 2.DICEA-Area di Geodesia e GeomaticaUniversity of Rome “La Sapienza”RomeItaly
  3. 3.Facultad de Ciencias AstronómicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations