Advertisement

Validation of Second-Generation GOCE Gravity Field Models by Astrogeodetic Vertical Deflections in Germany

  • C. Voigt
  • H. Denker
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

High-precision astrogeodetic vertical deflections in Germany are utilized to validate recent satellite-only global gravity field models with emphasis on the first- and second-generation GOCE models. In order to account for the different spectral characteristics of the data sets involved, the comparisons are performed with a multistage filtering procedure. The comparisons demonstrate that the second generation of GOCE models is significantly improved (by roughly 30 %) compared to the first release, and that the GOCE models contain considerably more gravity field information than pure GRACE models.

Keywords

Astrogeodetic validation GOCE gravity field models Vertical deflections 

Notes

Acknowledgements

The project REAL GOCE is part of the R&D-Programme GEOTECHNOLOGIEN, funded by the German Ministry of Education and Research (BMBF) and the German Research Foundation (DFG), Grant (03G0726C) of project REAL GOCE.

References

  1. ESA (1999) Gravity field and steady-state ocean circulation mission. SP-1233(1).Google Scholar
  2. Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86:7843–7854CrossRefGoogle Scholar
  3. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85:845–860CrossRefGoogle Scholar
  4. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  5. Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover Nr. 253 (in German)Google Scholar
  6. Hirt C (2010) Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. J Geod 84:179–190CrossRefGoogle Scholar
  7. Hirt C, Marti U, Bürki B, Featherstone WE (2010) Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data. J Geophys Res 115:B10404CrossRefGoogle Scholar
  8. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod 85:723–740CrossRefGoogle Scholar
  9. Ihde J, Wilmes H, Müller J, Denker H, Voigt C, Hosse M (2010) Validation of satellite gravity field models by regional terrestrial data sets. In: System Earth via geodetic-geophysical space techniques (Advanced Technologies in Earth Sciences) pp 277–296Google Scholar
  10. Jekeli C (1999) An analysis of vertical deflections derived from high-degree spherical harmonic models. J Geod 73:10–22CrossRefGoogle Scholar
  11. Newton’s Bulletin (2009) External quality evaluation reports of EGM08 (Issue No. 4). BGI and IGeS Joint Bulletin ISSN 1810-8555, Publication of the International Association of Geodesy and the International Gravity Field ServiceGoogle Scholar
  12. Pail R, Bruinsma S, Migliaccio F et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:845–860CrossRefGoogle Scholar
  13. Rummel R, van Gelderen M (1995) Meissl scheme – spectral characteristics of physical geodesy. Manuscr Geodaetica 20:379–385Google Scholar
  14. Sneeuw N, van Gelderen M (1997) The polar gap. Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in Earth science, vol 65, pp 559–568Google Scholar
  15. Tscherning CC, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Report No. 208, Department of Geodetic Science and Surveying, The Ohio State University, ColumbusGoogle Scholar
  16. Voigt C, Denker H, Hirt C (2009) Regional astrogeodetic validation of GPS and levelling data and quasigeoid models. In: IAG symposium, vol 133, pp 413–420Google Scholar
  17. Voigt C, Rülke A, Denker H, Ihde J, Liebsch G (2010) Validation of GOCE products by terrestrial data sets in Germany. Geotechnologien Science Report No. 17, pp 106–111Google Scholar
  18. Voigt C, Denker H (2011) Validation of GOCE gravity field models by astrogeodetic vertical deflections in Germany. In: Proceedings of the 4th international GOCE user workshop, SP-696, CD-ROMGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für ErdmessungLeibniz Universität HannoverHannoverGermany

Personalised recommendations