Skip to main content

Realisation of a Geodetic Datum Using a Gridded Absolute Deformation Model (ADM)

  • Conference paper
  • First Online:
Earth on the Edge: Science for a Sustainable Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 139))

Abstract

This paper describes a schema for a gridded absolute deformation model (ADM) and non-linear deformation patch model that can be used to transform point positions captured in the International Terrestrial Reference Frame (ITRF), or other closely aligned reference frame, to a reference epoch consistently over time for practical applications. The schema described utilises existing models of rigid plate motion, plate boundary deformation and non-linear deformation (e.g. coseismic and postseismic effects or subsidence). Application of an ADM and patch model can enable consistent Precise Point Positioning (PPP) over time and seamless integration of Continuously Operating Reference Station (CORS) networks within deforming zones. The strategy described can also ensure consistency of time-tagged spatial datasets (e.g. laser scanned point clouds and digital cadastral databases) and GIS within a kinematic environment. An ADM can also be used as the basis for static epoch projections of a national or regional kinematic datum. A case study from New Zealand is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Altamimi Z, Métivier L, Collilieux X (2012) ITRF2008 plate motion model. J Geophys Res 117:B07402. doi:10.1029/2011JB008930

    Google Scholar 

  • Argus D, Gordon R, DeMets C (2011) Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem Geophys Geosyst 12:Q11001. doi:10.1029/2011GC003751

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Blick G, Crook C, Grant D, Beavan J (2006) Implementation of a Semi-Dynamic Datum for New Zealand. A window on the future of geodesy, international association of geodesy symposia, 2005, vol 128, pp 38–43. IUGG General Assembly, Sapporo, 30 June–11 July 2003

    Google Scholar 

  • Blick G, Donnelly N, Jordan A (2009) The practical implications and limitations of the introduction of a semi-dynamic datum - A New Zealand case study. Geodetic Reference Frames. In: Drewes H (ed) IAG symposia, vol 134. Springer, Berlin, pp 115–120

    Google Scholar 

  • Dawson J, Woods A (2010) ITRF to GDA94 coordinate transformations. J Appl Geod 4(4):189–199

    Google Scholar 

  • DeMets C, Gordon R, Argus D (2010) Geologically current plate motions. Geophys J Int 181:1–80

    Article  Google Scholar 

  • Drewes H (2009) The actual plate kinematic and crustal deformation model APKIM2005 as a basis for a non-rotating ITRF, Geodetic Reference Frames. In: Drewes H (ed) IAG symposium, Munich, 9–14 October 2006

    Google Scholar 

  • Henton J, Craymer M, Ferland R, Dragert H, Mazzotti S, Forbes D (2006) Crustal motion and deformation monitoring of the Canadian landmass. Geomatica 60(2):173–191

    Google Scholar 

  • Kreemer C, Holt W, Haines J (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154:8–34

    Article  Google Scholar 

  • NRCan; Natural Resources Canada (2012) On-line precise point positioning. http://www.geod.nrcan.gc.ca/online_data_e.php. Accessed 9 Oct 2012

  • OmniSTAR (2012) http://www.omnistar.com/AboutUs/CompanyInformation.aspx. Accessed 9 Oct 2012

  • Pearson C, McCaffrey R, Elliott J, Snay R (2010) HTDP 3.0: software for coping with the coordinate changes associated with crustal motion. J Surv Eng 136:80

    Article  Google Scholar 

  • Plag H-P, Pearlman M (eds) (2009) Global Geodetic Observing System. Springer, Berlin

    Google Scholar 

  • Roberts C (2011) How will all the new GNSS signals help RTK Surveyors? In: Proceedings of SSSC 2011 Biennial conference of the Surveying and Spatial Sciences Institute, Wellington, 21–25 November 2011

    Google Scholar 

  • Snay R (1999) Using the HTDP software to transform spatial coordinates across time and between reference frames. Surv Land Inform Syst 59(1):15–25

    Google Scholar 

  • Stanaway R (2004) Implementation of a dynamic geodetic datum in Papua New Guinea: a case study. MPhil Thesis, The Australian National University

    Google Scholar 

  • Stanaway R, Roberts CA (2009) A simplified parameter transformation model from ITRF2005 to any static geocentric datum (e.g. GDA94). In: Proceedings from IGNSS symposium 2009, Surfers Paradise, 1–3 December 2009

    Google Scholar 

  • Stanaway R, Roberts CA (2010) CORS network and datum harmonisation in the Asia-Pacific region. In: FIG congress 2010, Sydney

    Google Scholar 

  • Tanaka Y, Saita H, Sugawara J, Iwata K, Toyoda T, Hirai H, Kawaguchi T, Matsuzaka S, Hatanaka Y, Tobita M, Kuroishi Y, Imakiire T (2007) Efficient maintenance of the Japanese Geodetic Datum 2000 using crustal deformation models - PatchJGD & Semi-Dynamic Datum. Bul Geog Surv Inst 54

    Google Scholar 

  • Winefield R, Crook C, Beavan J (2010) The application of a localised deformation model after an earthquake. In: FIG congress 2010, Sydney

    Google Scholar 

Download references

Acknowledgements

Chris Crook of LINZ has devoted some time to reviewing this paper and has provided some insights into how deformation modelling is being implemented in New Zealand with NZGD2000. The authors would also like to acknowledge the anonymous reviewers who provided detailed and valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stanaway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stanaway, R., Roberts, C., Blick, G. (2014). Realisation of a Geodetic Datum Using a Gridded Absolute Deformation Model (ADM). In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_34

Download citation

Publish with us

Policies and ethics