Advertisement

External Evaluation of the Terrestrial Reference Frame: Report of the Task Force of the IAG Sub-commission 1.2

  • X. Collilieux
  • Z. Altamimi
  • D. F. Argus
  • C. Boucher
  • A. Dermanis
  • B. J. Haines
  • T. A. Herring
  • C. W. Kreemer
  • F. G. Lemoine
  • C. Ma
  • D. S. MacMillan
  • J. Mäkinen
  • L. Métivier
  • J. Ries
  • F. N. Teferle
  • X. Wu
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 139)

Abstract

Ideally, the origin of the Terrestrial Reference Frame (TRF) is defined as the center of mass of the whole Earth system, the time evolution of its orientation is such that no global net rotation of the whole Earth’s surface is possible and the TRF scale is specified through the adoption of some physical constants and time-scale. These parameters need to be accurately determined since their choice has an influence on many Earth’s science applications. The aim of the task force “External evaluation of the Terrestrial Reference Frame” is to review all the applications for which the TRF accuracy is of fundamental importance. As the TRF choice has an influence on the interpretation of the results in these specific applications, we investigate if some evaluation procedures could be established. We classified the methods that allow evaluation of the TRF using ground, geodetic data or models that have not been used in the TRF construction, based on their expected contributions. Some of these methods have been applied to the latest International Terrestrial Reference System realizations and the results are presented here. Although further analysis will be necessary to deliver a more precise error budget, our findings demonstrate that the most recent realizations of the ITRS are more accurate than the previous in terms of origin and scale rate definition. The current level of ITRF2008 accuracy is likely to be at the level of 0.5 mm/year along each origin component and better than 0.3 mm/year in the scale rate according to the most recent studies.

Keywords

Satellite Laser Range Glacial Isostatic Adjustment Terrestrial Reference Frame Interferometric Synthetic Aperture Radar Absolute Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly funded by the Centre National d’Etudes Spatiales (CNES) through a TOSCA grant. The contribution by J.Mäkinen was supported by the Academy of Finland (grant 117094) and benefited from the co-operation in the COST Action ES0701 “Improved Constraints on Models of Glacial Isostatic Adjustment”

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112, B09401. doi: 10.1029/2007JB004949 Google Scholar
  3. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107:B10. doi: 10.1029/2001JB000561 Google Scholar
  4. Argus DF, Blewitt G, Peltier WR, Kreemer C (2011) Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS. Geophys Res Lett 38:16303. doi: 10.1029/2011GL048025 CrossRefGoogle Scholar
  5. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Peltier WR, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):916–960. doi: 10.1111/j.1365-246X.2009.04463.x CrossRefGoogle Scholar
  6. Argus DF (2007) Defining the translational velocity of the reference frame of Earth. Geophys J Int 169:830–838. doi: 10.1111/j.1365-246X.2007.03344.x CrossRefGoogle Scholar
  7. Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34:L14608. doi: 10.1029/2007GL030002 CrossRefGoogle Scholar
  8. Bonnefond P, Haines BJ, Watson C (2011) In situ absolute calibration and validation: a Link from coastal to open-ocean altimetry. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Heidelberg, pp 259–296. doi: 10.1007/978-3-642-12796-0_11 CrossRefGoogle Scholar
  9. Boucher C (1989) Current intercomparisons between conventional terrestrial systems. In: Kovalevsky J, Mueller II, Kolaczek B (eds) Reference frames in astronomy and geophysics. Kluwer Academic, Dordrecht, pp 327–343CrossRefGoogle Scholar
  10. Bouin M-N, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180(1):193–209. doi: 10.1111/j.1365-246X.2009.04411.x CrossRefGoogle Scholar
  11. Cerri L, Berthias J-P, Bertiger W, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33(S1):379–418. doi: 10.1080/01490419.2010.488966 CrossRefGoogle Scholar
  12. Collilieux X, Altamimi Z (2013) External evaluation of the origin and the scale of the international terrestrial reference frame. In: IAG symposia, vol 138, Springer, pp 27–31. doi: 10.1007/978-3-642-32998-2_5
  13. Collilieux X, Schmid R (2013) Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna z-offsets. GPS Solut 17(2):237–246. doi: 10.1007/s10291-012-0274-8
  14. Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi: 10.1007/s00190-010-0412-4 CrossRefGoogle Scholar
  15. Gross RS (2007) Earth rotation variations – long period. In: Herring TA (ed) Treatise on geophysics, vol 3. Elsevier, Oxford, pp 239–294. doi: 10.1016/B978-044452748-6.00057-2 CrossRefGoogle Scholar
  16. Haines BJ, Bar-Sever YE, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27(1):299–318. doi: 10.1080/01490410490465300 CrossRefGoogle Scholar
  17. Haines BJ, Bar-Sever YE, Bertiger W, Desai S, Harvey N, Weiss J (2010) Improved models of the GPS satellite antenna phase and group-delay variations using data from low-earth orbiters. In: AGU fall meeting, December 2010Google Scholar
  18. Kogan MG, Steblov GM (2008) Current global plate kinematics from GPS (1995-2007) with the plate-consistent reference frame. J Geophys Res 113, B04416. doi: 10.1029/2007JB005353 Google Scholar
  19. Lemoine F, Zelensky NP, Chinn DS et al (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46(12):1513–1540. doi: 10.1016/j.asr.2010.05.007 CrossRefGoogle Scholar
  20. Lidberg M, Johansson JM, Scherneck H-G, Milne GA (2010) Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J Geod 50:8–18. doi: 10.1016/j.jog.2009.11.010 CrossRefGoogle Scholar
  21. Mazzotti S, Lambert A, Henton J, James TS, Courtier N (2011) Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America. Geophys Res Lett 38:L24311. doi: 10.1029/2011GL049846 CrossRefGoogle Scholar
  22. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368. doi: 10.1016/j.asr.2005.05.113 CrossRefGoogle Scholar
  23. Morel L, Willis P (2002) Parameter sensitivity of TOPEX orbit and derived mean sea level to DORIS stations coordinates. Adv Space Res 30(2):255–263. doi: 10.1016/S0273-1177(02)00293-4 CrossRefGoogle Scholar
  24. Moritz H, Mueller II (1988) Earth rotation theory and observation. Ungar, New York. ISBN 0-8044-4671-7Google Scholar
  25. Petit G, Luzum B (eds) (2010) IERS Technical note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 179 pp. (paperback; in press)Google Scholar
  26. Plag HP, Hammond W, Kreemer C (2007) Combination of GPS-derived vertical motion with absolute gravity changes constrain the tie between reference frame origin and Earth center of mass. Poster presented at the EarthScope National Meeting, MontereyGoogle Scholar
  27. Plag HP, Pearlman M (eds) (2009) Global geodetic observing system. Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, p 332. doi: 10.1007/978-3-642-02687-4. ISBN 978-3-642-02686-7Google Scholar
  28. Ray RD, Beckley BD, Lemoine FG (2010) Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Adv Space Res 45(12):1510–1522. doi: 10.1016/j.asr.2010.02.020 CrossRefGoogle Scholar
  29. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505CrossRefGoogle Scholar
  30. Wöppelmann G, Martín Míguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global Planet Change 57(3–4):396–406. doi: 10.1016/j.gloplacha.2007.02.002 CrossRefGoogle Scholar
  31. Wu X, Collilieux X, Altamimi Z, Vermeersen B, Gross RS, Fukumori I (2011) Accuracy of the International Terrestrial Reference Frame origin and Earth expansion. Geophys Res Lett 38:L13304. doi: 10.1029/2011GL047450 Google Scholar
  32. Zerbini S, Richter B, Rocca F, van Dam T, Matonti F (2007) A combination of space and terrestrial geodetic techniques to monitor land subsidence: case study, the southeastern Po Plain, Italy. J Geophys Res 112:B11. doi: 10.1029/2006JB004338 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • X. Collilieux
    • 1
    • 2
    • 3
  • Z. Altamimi
    • 1
    • 2
    • 3
  • D. F. Argus
    • 4
  • C. Boucher
    • 5
  • A. Dermanis
    • 6
  • B. J. Haines
    • 4
  • T. A. Herring
    • 7
  • C. W. Kreemer
    • 8
  • F. G. Lemoine
    • 9
  • C. Ma
    • 9
  • D. S. MacMillan
    • 9
  • J. Mäkinen
    • 10
  • L. Métivier
    • 1
    • 2
    • 3
  • J. Ries
    • 11
  • F. N. Teferle
    • 12
  • X. Wu
    • 4
  1. 1.IGN, LAREGUniv Paris Diderot, Sorbonne Paris Cité, Université Paris-DiderotParis Cedex 13France
  2. 2.Groupe de Recherche de Géodésie Spatiale (GRGS)ToulouseFrance
  3. 3.Institut de Physique du Globe de ParisParisFrance
  4. 4.Jet Propulsion Laboratory (JPL)California Institute of TechnologyPasadenaUSA
  5. 5.Observatoire de Paris, SyrteParisFrance
  6. 6.Aristotle University of ThessalonikiThessalonikiGreece
  7. 7.Massachusetts Institute of TechnologyCambridgeUSA
  8. 8.Nevada Bureau of Mines and Geology and Seismological LaboratoryUniversity of NevadaRenoUSA
  9. 9.Planetary Geodynamics LaboratoryNASA Goddard Space Flight Center, Code 698GreenbeltUSA
  10. 10.Finnish Geodetic InstituteMasalaFinland
  11. 11.Center for Space ResearchUniversity of TexasAustinUSA
  12. 12.University of LuxembourgLuxembourgLuxembourg

Personalised recommendations