Skip to main content

High Precision Deformation Monitoring at the Geodynamic Observatory Moxa/Thuringia, Germany

The Three-Component Strainmeter Assembly

  • Conference paper
  • First Online:
Earth on the Edge: Science for a Sustainable Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 139))

Abstract

With strainmeters the observation of crustal deformation is possible with a resolution better than 10−9 m. At the Geodynamic Observatory Moxa in Thuringia/Germany an assembly of strainmeters of different types is recording deformation. Deformation mainly results from the tidal forces of sun and moon acting on the Earth, but also comes from seismic wave propagation or regional and local sources. Here we describe the results of an analysis of five time-series, each spanning 482 days, obtained from the different instruments and areal strain. We focus on the Earth tides but also look on the resonance of the Earth’s core to tidal forcing, the Nearly Diurnal Free Wobble. Even if not all five time-series show the resonance, its finding, especially in strain data, confirms the high data quality and sensitivity of the instruments. The analysis of the strainmeter data shows the comparability of the data from the different instruments as well as the good data quality connected to the very low noise level at the Geodynamic Observatory Moxa. Comparison with ocean loading shows that strong effects from local conditions like topography or rock inhomogeneities exist.

PACS 91.10.Kg ⋅ 91.10.Tq

(G. Jentzsch now retired)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573. doi:10.1364/AO.35.001566

    Article  Google Scholar 

  • Ciddor PE (2002) Refractive index of air: 3. The roles of CO2, H2O, and refractive virials. Appl Opt 41(12):2292–2298. doi:10.1364/AO.41.002292

    Article  Google Scholar 

  • Edlén B (1966) The refractive index of air. Metrologia 2(2):71–80. doi:10.1088/0026-1394/2/2/002

    Article  Google Scholar 

  • Gebauer A, Steffen H, Kroner C, Jahr T (2010) Finite element modelling of atmosphere loading effects on strain, tilt and displacement at multi-sensor stations. Geophys J Int 181(3):1593–1612. doi:10.1111/j.1365-246X.2010.04549.x

    Google Scholar 

  • Ishii H (2002) Environmental effects on strain observation, their applications for geophysical study and necessity of deep borehole observation for noiselessly high quality. Bull d’Inf Marées Terr 137:10907–10908

    Google Scholar 

  • Ishii H, Yamauchi T, Kusumoto F (1997) Development of high sensitivity borhole strainmeters and application for rock mechanics and earthquake prediction study. In: Sugawara K, Obara Y (eds) Rock stress. Proceedings of the international symposium on rock stress. Balkema, Rotterdam, pp 253–258

    Google Scholar 

  • Ishii H, Yamauchi T, Matsumoto S, Hirata Y, Nakao S (2002) Development of multi-component borehole instrument for earthquake prediction study, some observed example of precursory and co-seismic phenomena relating to earthquake swarms and application of the instrument for rock mechanics. In: Ogasawara H, Yanagidani T, Ando M (eds) Seismogenic process monitoring. Balkema, Rotterdam, pp 365–377

    Google Scholar 

  • Jahr T, Jentzsch G, Kroner C (2001) The Geodynamic Observatory Moxa/Germany: instrumentation and purposes. J Geod Soc Jpn 47(1):34–39. doi:10.11366/sokuchi1954.47.34

    Google Scholar 

  • Jahr T, Kroner C, Lippmann A (2006) Strainmeters at Moxa observatory, Germany. J Geodyn 41(1–3):205–212. doi:10.1016/j.jog.2005.08.017

    Article  Google Scholar 

  • Jentzsch G, Jahr T, Ishii H (2006) News from the Geodynamic Observatory Moxa: the 4-component borehole strainmeter. Bull d’Inf Marées Terr 141:11245–11252

    Google Scholar 

  • Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr 56(5):567–581. doi:10.1023/A:1011157212596

    Article  Google Scholar 

  • Matsumoto K, Sato T, Takanezawa T, Ooe M (2001) GOTIC2: A program for computation of oceanic tidal loading effect. J Geod Soc Jpn 47(1):243–248. doi:10.11366/sokuchi1954.47.243

    Google Scholar 

  • Michelson AA (1881) The relative motion of the Earth and the Luminiferous ether. Am J Sci III 22(128):120–129

    Article  Google Scholar 

  • Michelson AA (1882) Interference phenomena in a new form of refractometer. Philos Mag V 13(81):236–242. doi:10.1080/14786448208627176

    Article  Google Scholar 

  • Polzer G, Zürn W, Wenzel HG (1996) NDFW analysis of gravity, strain and tilt data from BFO. Bull d’Inf Marées Terr 125:9514–9545

    Google Scholar 

  • Rosat S, Hinderer J, Crossley D, Rivera L (2003) The search for the Slichter mode: comparison of noise levels of superconducting gravimeters and investigation of a stacking method. Phys Earth Planet Inter 140(1–3):183–202. doi:10.1016/j.pepi.2003.07.010

    Article  Google Scholar 

  • Sato T (1991) Fluid core resonance measured by quartz tube extensometers at the Esashi Earth Tides station. In: Kakkuri J (ed) Proceedings of the 11th international symposium on earth tides, Helsinki, 1989. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 573–582

    Google Scholar 

  • Wahr JM (1981) Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys J R Astron Soc 64(3):677–703. doi:10.1111/j.1365-246X.1981.tb02690.x

    Article  Google Scholar 

  • Wenzel HG (1996) The nanogal software: Earth tide data processing package ETERNA 3.30. Bull d’Inf Marées Terr 124:9425–9439

    Google Scholar 

  • Zürn W (1997) The nearly-diurnal free wobble-resonance. Lecture notes in Earth sciences, vol 66. Springer, Berlin, pp 95–109

    Google Scholar 

Download references

Acknowledgements

The laser strainmeter has been developed in cooperation with SIOS Messtechnik company in Ilmenau/Germany. We thank the staff at SIOS, especially Dr. W. Pöschel and Dr. D. Dontsov, for their effort to steadily improve the laser strainmeter. Our thanks go also to W. Kühnel and M. Meininger, technicians at the Geodynamic Observatory Moxa, for their excellent maintenance of all instruments.

This article is based on the Diploma thesis of the first author.

We thank three anonymous reviewers for their comments, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schindler, P., Jahr, T., Jentzsch, G., Kukowski, N. (2014). High Precision Deformation Monitoring at the Geodynamic Observatory Moxa/Thuringia, Germany. In: Rizos, C., Willis, P. (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37222-3_18

Download citation

Publish with us

Policies and ethics