Skip to main content

A Framework for Derivative Free Algorithm Hybridization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Abstract

Column generation is a basic tool for the solution of large-scale mathematical programming problems. We present a class of column generation algorithms in which the columns are generated by derivative free algorithms, like population-based algorithms. This class can be viewed as a framework to define hybridization of free derivative algorithms. This framework has been illustrated in this article using the Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms, combining them with the Nelder-Mead (NM) method. Finally a set of computational experiments has been carried out to illustrate the potential of this framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. García, R., Marín, A., Patriksson, M.: Column generation algorithms for nonlinear optimization, I: Convergence analysis. Optimization 52(2), 171–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Von Hohenbalken, B.: Simplicial decomposition in nonlinear programming algorithms. Mathematical Programming 13(1), 49–68 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ventura, J.A., Hearn, D.W.: Restricted simplicial decomposition for convex constrained problems. Mathematical Programming 59, 71–85 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quarterly, 95–110 (1956)

    Google Scholar 

  5. Hearn, D.W., Lawphongpanich, S., Ventura, J.A.: Restricted simplicial decomposition: Computation and extensions. Mathematical Programming Study 31, 99–118 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. García-Ródenas, R., Marín, A., Patriksson, M.: Column generation algorithms for nonlinear optimization, II: Numerical investigations. Computers and Operations Research 38(3), 591–604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    Article  MATH  Google Scholar 

  8. Bohachevsky, I.O., Johnson, M.E., Myron, L.S.: Generalized Simulated Annealing for Function Optimization. Technometrics 28(3) (1986)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE of the International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  10. Kennedy, J.F., Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)

    Google Scholar 

  11. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. Journal of the Association for Computing Machinery, 212–229 (1961)

    Google Scholar 

  12. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM Journal on Optimization 9(1), 112–147 (1999)

    Article  MathSciNet  Google Scholar 

  13. Laarhoven, P., Aarts, E.: Simulated annealing: Theory and Applications, 3rd edn. Kluwer Academic Publishers, Dordrecht (1987)

    Book  MATH  Google Scholar 

  14. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 1–10 (2008)

    Google Scholar 

  15. Angulo, E., Castillo, E., García-Ródenas, R., Sánchez-Vizcaíno, J.: Determining Highway Corridors. Journal of Transportation Engineering 138(5), 557–570 (2012)

    Article  Google Scholar 

  16. Fan, S.-K.S., Zahara, E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. European Journal of Operational Research, 527–548 (2006)

    Google Scholar 

  17. Functions definition, http://bit.ly/UQlMTB (last access: January 15th, 2013)

  18. Espinosa-Aranda, J.L., García-Ródenas, R.: A discrete event-based simulation model for real-time traffic management in railways. Journal of Intelligent Transportation Systems 16(2), 94–107 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Espinosa-Aranda, J.L., Garcia-Rodenas, R., Angulo, E. (2013). A Framework for Derivative Free Algorithm Hybridization. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics