Skip to main content

A Multi-objective Proposal Based on Firefly Behaviour for Green Scheduling in Grid Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Abstract

Global warming and climate change are threats that the planet is facing nowadays. Green computing has emerged as a challenge to reduce the energy consumption and pollution footprints of computers. Grid Computing could match the principles of Green Computing as it could exploit and efficiently use processors’ computing power. This paper presents a swarm multi-objective optimization algorithm for scheduling experiments (the job execution) on the Grid. Multi-Objective Firefly Algorithm (MO-FA) is inspired by the brightness attraction among fireflies. One of the main contributions of this work is that the increasing firefly brightness is interpreted as an improvement in response time and energy savings. This would fulfill both conflicting objectives of Grid users: execution time and energy consumption. Results show that MO-FA is a reliable method according to its interquartile range and its comparison with the standard and well-known multi-objective algorithm NSGA-II. Moreover, it performs better than actual grid schedulers as the Workload Management System (WMS) and the Deadline Budget Constraint (DBC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsuaga-Ríos, M., Vega-Rodríguez, M.A.: Multi-objective Firefly Algorithm for Energy Optimization in Grid Environments. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 350–351. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bodenstein, C.: Heuristic scheduling in grid environments: Reducing the operational energy demand. In: Neumann, D., Baker, M., Altmann, J., Rana, O. (eds.) Economic Models and Algorithms for Distributed Systems. Autonomic Systems, pp. 239–256. Birkhäuser, Basel (2010)

    Google Scholar 

  3. Buyya, R., Murshed, M., Abramson, D.: A deadline and budget constrained cost-time optimisation algorithm for scheduling task farming applications on global grids. In: Int. Conf. on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA, pp. 2183–2189 (2002)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Diaz, C.O., Guzek, M., Pecero, J.E., Bouvry, P., Khan, S.U.: Scalable and energy-efficient scheduling techniques for large-scale systems. In: Proceedings of the 2011 IEEE 11th International Conference on Computer and Information Technology, CIT 2011, pp. 641–647. IEEE Computer Society, Washington, DC (2011)

    Chapter  Google Scholar 

  6. Dolz, M.F., Fernández, J.C., Iserte, S., Mayo, R., Quintana, E.S., Cotallo, M.E., Díaz, G.: Energysaving cluster experience in ceta-ciemat. In: Ibergrid (ed.) 5th Iberian Grid Infrastructure Conference, Santander, Spain, pp. 39–50 (2011)

    Google Scholar 

  7. Entezari-Maleki, R., Movaghar, A.: A probabilistic task scheduling method for grid environments. Future Gener. Comput. Syst. 28(3), 513–524 (2012)

    Article  Google Scholar 

  8. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  9. Hernández, C.J.B., Sierra, D.A., Varrette, S., Pacheco, D.L.: Energy efficiency on scalable computing architectures. In: Proceedings of the 2011 IEEE 11th International Conference on Computer and Information Technology, CIT 2011, pp. 635–640. IEEE Computer Society, Washington, DC (2011)

    Chapter  Google Scholar 

  10. Khan, S.U., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans. Parallel Distrib. Syst. 20(3), 346–360 (2009)

    Article  MathSciNet  Google Scholar 

  11. Khan, S.U.: A goal programming approach for the joint optimization of energy consumption and response time in computational grids. In: 28th IEEE International Performance Computing and Communications Conference, pp. 410–417 (2009)

    Google Scholar 

  12. Khan, S.U.: A multi-objective programming approach for resource allocation in data centers. In: The 2009 International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 152–158 (2009)

    Google Scholar 

  13. Khare, V., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)

    Article  Google Scholar 

  15. Lee, Y.H., Leu, S., Chang, R.S.: Improving job scheduling algorithms in a grid environment. Future Gener. Comput. Syst. 27(8), 991–998 (2011)

    Article  Google Scholar 

  16. Lindberg, P., Leingang, J., Lysaker, D., Khan, S.U., Li, J.: Comparison and analysis of eight scheduling heuristics for the optimization of energy consumption and makespan in large-scale distributed systems. The Journal of Supercomputing 59(1), 323–360 (2012)

    Article  Google Scholar 

  17. Liu, W., Li, H., Du, W., Shi, F.: Energy-aware task clustering scheduling algorithm for heterogeneous clusters. In: Proceedings of the 2011 IEEE/ACM International Conference on Green Computing and Communications, GREENCOM 2011, pp. 34–37. IEEE Computer Society, Washington, DC (2011)

    Chapter  Google Scholar 

  18. Lovasz, G., Berl, A., De Meer, H.: Energy-efficient and performance-conserving resource allocation in data centers. In: Proc. of the COST Action IC0804 on Energy Efficiency in Large Scale Distributed Systems - 2nd Year, pp. 31–35. IRIT (2011)

    Google Scholar 

  19. Sulistio, A., Poduval, G., Buyya, R., Tham, C.: On incorporating differentiated levels of network service into gridsim. Future Gener. Comput. Syst. 23(4), 606–615 (2007)

    Article  Google Scholar 

  20. Talukder, A.K.M.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution for scheduling workflow applications on global grids. Concurr. Comput.: Pract. Exper. 21(13), 1742–1756 (2009)

    Article  Google Scholar 

  21. Tsai, M.-Y., Chiang, P.-F., Chang, Y.-J., Wang, W.-J.: Heuristic Scheduling Strategies for Linear-Dependent and Independent Jobs on Heterogeneous Grids. In: Kim, T.-h., Adeli, H., Cho, H.-s., Gervasi, O., Yau, S.S., Kang, B.-H., Villalba, J.G. (eds.) GDC 2011. CCIS, vol. 261, pp. 496–505. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Tsuchiya, T., Osada, T., Kikuno, T.: Genetics-based multiprocessor scheduling using task duplication. Microprocessors and Microsystems 22(3-4), 197–207 (1998)

    Article  Google Scholar 

  23. Wang, L., von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with dvfs. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID 2010, pp. 368–377. IEEE Computer Society, Washington, DC (2010)

    Chapter  Google Scholar 

  24. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arsuaga-Ríos, M., Vega-Rodríguez, M.A. (2013). A Multi-objective Proposal Based on Firefly Behaviour for Green Scheduling in Grid Systems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics