Skip to main content

Synaptic Scaling Balances Learning in a Spiking Model of Neocortex

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Included in the following conference series:

Abstract

Learning in the brain requires complementary mechanisms: potentiation and activity-dependent homeostatic scaling. We introduce synaptic scaling to a biologically-realistic spiking model of neocortex which can learn changes in oscillatory rhythms using STDP, and show that scaling is necessary to balance both positive and negative changes in input from potentiation and atrophy. We discuss some of the issues that arise when considering synaptic scaling in such a model, and show that scaling regulates activity whilst allowing learning to remain unaltered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dan, Y., Poo, M.: Spike timing-dependent plasticity of neural circuits. Neuron 44(1), 23–30 (2004)

    Article  Google Scholar 

  2. Zhang, L., Tao, H., Holt, C., Harris, W., Poo, M.: A critical window for cooperation and competition among developing retinotectal synapses. Nature 395(6697), 37–44 (1998)

    Article  Google Scholar 

  3. Neymotin, S., Lee, H., Park, E., Fenton, A., Lytton, W.: Emergence of physiological oscillation frequencies in a computer model of neocortex. Front. Comput. Neurosci. 5 (2011)

    Google Scholar 

  4. Neymotin, S., Kerr, C., Francis, J., Lytton, W.: Training oscillatory dynamics with spike-timing-dependent plasticity in a computer model of neocortex. In: Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–6. IEEE (2011)

    Google Scholar 

  5. Turrigiano, G.: The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3), 422–435 (2008)

    Article  Google Scholar 

  6. Van Rossum, M., Bi, G., Turrigiano, G.: Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20(23), 8812 (2000)

    Google Scholar 

  7. Chandler, B., Grossberg, S.: Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: Noise, saturation, short-term memory, synaptic scaling, and BDNF. Neural Networks (2012)

    Google Scholar 

  8. Binzegger, T., Douglas, R., Martin, K.: A quantitative map of the circuit of cat primary visual cortex. The Journal of Neuroscience 24(39), 8441–8453 (2004)

    Article  Google Scholar 

  9. Lefort, S., Tomm, C., Floyd Sarria, J., Petersen, C.: The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61(2), 301 (2009)

    Article  Google Scholar 

  10. Lytton, W., Stewart, M.: Rule-based firing for network simulations. Neurocomputing 69(10), 1160–1164 (2006)

    Article  Google Scholar 

  11. Lytton, W., Omurtag, A., Neymotin, S., Hines, M.: Just-in-time connectivity for large spiking networks. Neural Comput. 20(11), 2745–2756 (2008)

    Article  MATH  Google Scholar 

  12. Rutherford, L., Nelson, S., Turrigiano, G.: BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21(3), 521–530 (1998)

    Article  Google Scholar 

  13. Turrigiano, G.: Too many cooks? intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011)

    Article  Google Scholar 

  14. Fröhlich, F., Bazhenov, M., Sejnowski, T.: Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. The Journal of Neuroscience 28(7), 1709–1720 (2008)

    Article  Google Scholar 

  15. Carnevale, N., Hines, M.: The NEURON Book. Cambridge University Press, New York (2006)

    Google Scholar 

  16. Prieto, G., Parker, R., Vernon III, F.: A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences 35(8), 1701–1710 (2009)

    Article  Google Scholar 

  17. Busche, M., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K., Haass, C., Staufenbiel, M., Konnerth, A., Garaschuk, O.: Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science Signalling 321(5896), 1686 (2008)

    Google Scholar 

  18. Trasande, C., Ramirez, J.: Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? J. Clin. Neurophysiol. 24(2), 154–164 (2007)

    Article  Google Scholar 

  19. Small, D.H.: Network dysfunction in Alzheimer’s disease: does synaptic scaling drive disease progression? Trends Mol. Med. 14(3), 103–108 (2008)

    Article  Google Scholar 

  20. Rowan, M.: Information-selectivity of beta-amyloid pathology in an associative memory model. Front. Comput. Neurosci. 6(2) (January 2012)

    Google Scholar 

  21. Rowan, M.: Effects of Compensation, Connectivity and Tau in a Computational Model of Alzheimer’s Disease. In: Proc. IJCNN, pp. 543–550. IEEE (2011)

    Google Scholar 

  22. Lamsa, K., Kullmann, D., Woodin, M.: Spike-timing dependent plasticity in inhibitory circuits. Frontiers in Synaptic Neuroscience 2 (2010)

    Google Scholar 

  23. McClelland, J., McNaughton, B., O’Reilly, R.: Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102(3), 419–457 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rowan, M., Neymotin, S. (2013). Synaptic Scaling Balances Learning in a Spiking Model of Neocortex. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics