Modeling the Dynamics of Dengue Fever

  • Kun Hu
  • Christian Thoens
  • Simone Bianco
  • Stefan Edlund
  • Matthew Davis
  • Judith Douglas
  • James Kaufman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7812)


Dengue is a major international public health concern that impacts one-third of the world’s population. There are four serotypes of the dengue virus (DENV). Infection with one serotype affords life-long immunity to that serotype but only temporary cross immunity (CI) to other serotypes. The risk of lethal complications is elevated upon re-infection, possibly because of the effect of antibody-dependent enhancement (ADE). In this paper we propose a system dynamics model that captures both host and vector populations, latency, and four dengue serotypes. This model allows one to study both CI and ADE. Modeling the Aedes vector adds complexity, but we consider this to be important because combating the mosquito vector may be the most practical intervention in the absence of an effective vaccine. Our results support the need to model the vector population and ADE to explain the observed epidemiological data.


Dengue cross immunity antibody-dependent enhancement system dynamics model dynamic behaviors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Nisalak, A., Endy, T.P., Nimmannitya, S., Kalayanarooj, S., Thisayakorn, U., Scott, R.M., Burke, D.S., Hoke, C.H., Innis, B.L., Vaughn, D.W.: Serotype-Specific Dengue Virus Circulation and Dengue Disease in Bangkok, Thailand from 1973 to 1999. Am. J. Trop. Med. Hyg. 68(2), 191–202 (2003)Google Scholar
  3. 3.
    Cummings, D.A.T., Iamsirithaworn, S., Lessler, J.T., McDermott, A., Prasanthong, R., Nisalak, A., Jarman, R.G., Burke, D.S., Gibbons, R.V.: The Impact of the Demographic Transition on Dengue in Thailand: Insights from a Statistical Analysis and Mathematical Modeling. PLoS Med. 6(9) (2009)Google Scholar
  4. 4.
    Semenza, J.C., Menne, B.: Climate Change and Infectious Diseases in Europe. Lancet Infect. Dis. 9(6), 365–375 (2009)CrossRefGoogle Scholar
  5. 5.
    Hopp, M., Foley, J.: Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti. Climatic Change 48(2), 441–463 (2001)CrossRefGoogle Scholar
  6. 6.
    Halstead, S.B., O’Rourke, E.J.: Antibody-Enhanced Dengue Virus Infection in Primate Leukocytes. Nature 265, 739 (1977)CrossRefGoogle Scholar
  7. 7.
    CDC website (2012),
  8. 8.
    Kawaguchi, I., Sasaki, A., Boots, M.: Why Are Dengue Virus Serotypes So Distantly Related? Enhancement and Limiting Serotype Similarity between Dengue Virus Strains. Proc. R. Soc. London [Biol.] 270, 2241–2247 (2003)CrossRefGoogle Scholar
  9. 9.
    Ferguson, N.M., Anderson, R.M., Gupta, S.: The Effect of Antibody-Dependent Enhancement on the Transmission Dynamics and Persistence of Multiple-Strain Pathogens. Proc. Natl. Acad. Sci. U.S.A. 96, 790 (1999)CrossRefGoogle Scholar
  10. 10.
    Recker, M., Blyuss, K.B., Simmons, C.P., Tinh Hien, T., Wills, B., Farrar, J., Gupta, S.: Immunological Serotype Interactions and Their Effect on the Epidemiological Pattern of Dengue. Proc. Biol. Sci. 276(1667), 2541–2548 (2009)CrossRefGoogle Scholar
  11. 11.
    Wearing, H.J., Rohani, P.: Ecological and Immunological Determinants of Dengue Epidemics. Proc. Natl. Acad. Sci. U.S.A. 103, 11802–111807 (2006)CrossRefGoogle Scholar
  12. 12.
    Johansson, M.A., Hombach, J., Cummings, D.A.T.: Models of the Impact of Dengue Vaccines: A Review of Current Research and Potential Approaches. Vaccine 29(35), 5860–5868 (2011)CrossRefGoogle Scholar
  13. 13.
    Cummings, D.A.T., Schwartz, I.B., Billings, L., Shaw, L.B., Burke, D.S.: Dynamic Effects of Antibody-Dependent Enhancement on the Fitness of Viruses. Proc. Natl. Acad. Sci. U.S.A. 102, 15259–15264 (2005)CrossRefGoogle Scholar
  14. 14.
    Nagao, Y., Koelle, K.: Decreases in Dengue Transmission Act to Increase the Incidence of Dengue Hemorrhagic Fever. Proc. Natl. Acad. Sci. U. S. A. 105, 2238–2243 (2008)CrossRefGoogle Scholar
  15. 15.
    Adams, B., Boots, M.: Modelling the Relationship between Antibody-Dependent Enhancement and Immunological Distance with Application to Dengue. J. Theor. Biol. 242, 337–346 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bianco, S., Shaw, L.B., Schwartz, I.B.: Epidemics with Multistrain Interactions: The Interplay between Cross Immunity and Antibody-Dependent Enhancement. Chaos 19(4), 9 (2009)CrossRefGoogle Scholar
  17. 17.
    Halstead, S.B.: Dengue Virus-Mosquito Interactions. Annu. Rev. Entomol. 53, 273–291 (2008)CrossRefGoogle Scholar
  18. 18.
    Billings, L., Schwartz, I.B., Shaw, L.B., McCrary, M., Burke, D.S., Cummings, D.A.T.: Instabilities in Multiserotype Disease Models with Antibody-Dependent Enhancement. J. Theor. Biol. 246, 18–27 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chowell, G., Diaz-Duenas, P., Miller, J.C., Alcazar-Velazco, A., Hyman, J.M., Fenimore, P.W., Castillo-Chavez, C.: Estimation of the Reproduction Number of Dengue Fever from Spatial Epidemic Data. Math. Biosci. 208(2), 571–589 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Koopman, J.S., Prevots, D.R., Marin, M.A.V., Dantes, H.G., Aquino, M.L.Z., Longini, I.M., Amor, J.S.: Determinants and Predictors of Dengue Infection in Mexico. Am. J. Epidemiol. 133(11), 1168–1178 (1991)Google Scholar
  21. 21.
    Muir, L.E., Kay, B.H.: Aedes Aegypti Survival and Dispersal Estimated by Mark–Release–Recapture in Northern Australia. Am. J. Trop. Med. Hyg. 58(3), 277–282 (1998)Google Scholar
  22. 22.
    Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: Transmission Dynamics and Epidemiology of Dengue: Insights from Age-Stratified Sero-Prevalence Surveys. Philos. Trans. R. Soc. London [Biol.] 354(1384), 757–768 (1999)CrossRefGoogle Scholar
  23. 23.
    Gubler, D.J., Suharyono, W., Tan, R., Abidin, M., Sie, A.: Viraemia in Patients with Naturally Acquired Dengue Infection. Bull. W. H. O. 59, 623–630 (1981)Google Scholar
  24. 24.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control, 2nd edn. Oxford University Press (1991)Google Scholar
  25. 25.
    MacDonald, G.: The Epidemiology and Control of Malaria. Oxford University Press (1957)Google Scholar
  26. 26.
    MacDonald, G.: The Dynamics of Helminth Infections, with Special Reference to Schistosomes. Trans. R. Soc. Trop. Med. Hyg. 59(5), 489–506 (1965)CrossRefGoogle Scholar
  27. 27.
    Kamo, M., Sasaki, A.: The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D: Nonlinear Phenomena 165, 228–241 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kun Hu
    • 1
  • Christian Thoens
    • 2
  • Simone Bianco
    • 3
  • Stefan Edlund
    • 1
  • Matthew Davis
    • 1
  • Judith Douglas
    • 1
  • James Kaufman
    • 1
  1. 1.IBM Almaden Research CenterSan JoseUSA
  2. 2.Federal Institute for Risk Assessment, Biological SafetyBerlinGermany
  3. 3.Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations