Skip to main content

How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory

  • Conference paper
Book cover Genetic Programming (EuroGP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7831))

Included in the following conference series:

Abstract

Despite having a multi-billion dollar market and many operational advantages, Flash memory suffers from a serious drawback, that is, the gradual degradation of its storage locations through use. Manufacturers currently have no method to predict how long they will function correctly, resulting in extremely conservative longevity specifications being placed on Flash devices.

We leverage the fact that the durations of two crucial Flash operations, program and erase, change as the chips age. Their timings, recorded at intervals early in chips’ working lifetimes, are used to predict whether storage locations will function correctly after given numbers of operations. We examine how early and with how little data such predictions can be made. Genetic Programming, employing the timings as inputs, is used to evolve binary classifiers that achieve up to a mean of 97.88% correct classification. This technique displays huge potential for real-world application, with resulting savings for manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuckle, T., Hogan, D., Ryan, C.: Optimising Flash Memory for Differing Usage Scenarios: Goals and Approach. In: Lee, G., Howard, D., Ślęzak, D., Hong, Y.S. (eds.) ICHIT 2012. CCIS, vol. 310, pp. 137–140. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Arbuckle, T., Hogan, D., Ryan, C.: Optimising Flash non-volatile memory using machine learning: A project overview. In: Proceedings of the 5th Balkan Conference on Informatics (BCI 2012), pp. 235–238 (2012)

    Google Scholar 

  3. Boboila, S., Desnoyers, P.: Write endurance in Flash drives: Measurement and analysis. In: 8th USENIX Conference on File and Storage Technologies (FAST 2010), San Jose, California, pp. 115–128 (2010)

    Google Scholar 

  4. Brewer, J., Gill, M.: Nonvolatile Memory Technologies with Emphasis on Flash (A Comprehensive Guide to Understanding and Using Flash Memory Devices). Wiley-IEEE Press (2008)

    Google Scholar 

  5. Cai, Y., Haratsch, E., Mutlu, O., Mai, K.: Error patterns in MLC NAND Flash memory: Measurement, characterization, and analysis. In: Design, Automation Test in Europe Conference Exhibition (DATE 2012), pp. 521–526 (2012)

    Google Scholar 

  6. Cappelletti, P., Bez, R., Cantarelli, D., Fratin, L.: Failure mechanisms of Flash cell in program/erase cycling. In: Technical Digest, International Electron Devices Meeting (IEDM 1994), San Francisco, CA, USA, pp. 291–294 (1994)

    Google Scholar 

  7. Desnoyers, P.: Empirical evaluation of NAND Flash memory performance. SIGOPS Oper. Syst. Rev. 44, 50–54 (2010)

    Article  Google Scholar 

  8. Fayrushin, A., Lee, C., Park, Y., Choi, J., Choi, J., Chung, C.: Endurance prediction of scaled NAND Flash memory based on spatial mapping of erase tunneling current. In: 3rd IEEE International Memory Workshop (IMW 2011), pp. 1–4 (2011)

    Google Scholar 

  9. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A 119(781), 173–181 (1928)

    Article  MATH  Google Scholar 

  10. Ghidini, G.: Charge-related phenomena and reliability of non-volatile memories. Microelectronics Reliability 52, 1876–1882 (2012)

    Article  Google Scholar 

  11. Grupp, L.M., Caulfield, A.M., Coburn, J., Swanson, S., Yaakobi, E., Siegel, P.H., Wolf, J.K.: Characterizing Flash memory: anomalies, observations, and applications. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pp. 24–33. ACM, New York (2009)

    Chapter  Google Scholar 

  12. Grupp, L., Davis, J., Swanson, S.: The bleak future of NAND Flash memory. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, San Jose, California, pp. 17–24 (2012)

    Google Scholar 

  13. Hogan, D., Arbuckle, T., Ryan, C.: Evolving a storage block endurance classifier for Flash memory: A trial implementation. In: Proc. 11th IEEE Int. Conference on Cybernetic Intelligent Systems (CIS 2012), pp. 12–17 (2012)

    Google Scholar 

  14. Hogan, D., Arbuckle, T., Ryan, C., Sullivan, J.: Evolving a retention period classifier for use with Flash memory. In: Proc. 4th Int. Conf. on Evolutionary Computation Theory and Applications (ECTA 2012), pp. 24–33 (2012)

    Google Scholar 

  15. Kahng, D., Sze, S.: A floating-gate and its application to memory devices. The Bell System Technical Journal 46(6), 1288–1295 (1967)

    Google Scholar 

  16. Kitahara, Y., Hagishima, D., Matsuzawa, K.: Reliability of NAND Flash memories induced by anode hole generation in floating-gate. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2011), pp. 131–134 (2011)

    Google Scholar 

  17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press (1992)

    Google Scholar 

  18. Luke, S.: ECJ 20. A Java-based evolutionary computation research system (2010), http://cs.gmu.edu/~eclab/projects/ecj/

  19. Micheloni, R., Crippa, L., Marelli, A.: Inside NAND Flash Memories. Springer (2010)

    Google Scholar 

  20. Micheloni, R., Marelli, A., Ravasio, R.: Error Correction Codes for Non-Volatile Memories. Springer (2010)

    Google Scholar 

  21. Moon, J., No, J., Lee, S., Kim, S., Yang, J., Chang, S.H.: Noise and interference characterization for MLC Flash memories. In: International Conference on Computing, Networking and Communications (ICNC 2012), pp. 588–592 (2012)

    Google Scholar 

  22. Sullivan, J., Ryan, C.: A destructive evolutionary algorithm process. Soft Computing – A Fusion of Foundations, Methodologies and Applications 15, 95–102 (2011)

    Google Scholar 

  23. Trendforce: eMMC and SSD to contribute to 15% NAND Flash output value growth in 2013 (2012), http://press.trendforce.com/en/node/4931 (accessed January 11, 2013)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hogan, D., Arbuckle, T., Ryan, C. (2013). How Early and with How Little Data? Using Genetic Programming to Evolve Endurance Classifiers for MLC NAND Flash Memory. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds) Genetic Programming. EuroGP 2013. Lecture Notes in Computer Science, vol 7831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37207-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37207-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37206-3

  • Online ISBN: 978-3-642-37207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics