Skip to main content

Detecting Protein Conformational Changes in Interactions via Scaling Known Structures

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Conformational changes frequently occur when proteins interact with other proteins. How to detect such changes in silico is a major problem. Existing methods for docking with conformational changes remain time-consuming, and they solve the problem only for a small portion of protein-protein complexes accurately. This work presents a more accurate method (FlexDoBi) for docking with conformational changes. FlexDoBi generates the possible conformational changes of the interface residues that transform the proteins from their unbound states to bound states. Based on the generated conformational changes, multi-dimensional scaling is performed to construct candidates for the bound structure. We develop the new energy items for determining the orientation of proteins and selecting of plausible conformational changes. Experimental results illustrate that FlexDoBi achieves better results than other methods for the same purpose. On 20 complexes, we obtained an average iRMSD of 1.55Å, which compares favorably with the average iRMSD of 1.94Å in the predictions from FiberDock. Compared with ZDOCK, our results are of 0.35Å less in average iRMSD on the medium difficulty group, and 0.81Å less on the difficulty group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaro, S., Gasparrini, F., Incani, O., Caglioti, L., Pierini, M., Villani, C.: “quasi flexible” automatic docking processing for studying stereoselective recognition mechanisms, part 2: Prediction of deltadeltag of complexation and 1h-nmr noe correlation. Journal of Computational Chemistry 28(6), 1119–1128 (2007)

    Article  Google Scholar 

  2. Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)

    Article  Google Scholar 

  3. Brown, J.B., Bahadur, D., Tomita, E., Akutsu, T.: Multiple methods for protein side chain packing using maximum weight cliques. Genome Informatics 3(12), 191–200 (2006)

    Google Scholar 

  4. Chen, R., Li, L., Weng, Z.: Zdock: an initial-stage protein-docking algorithm. Proteins 52, 80–87 (2003)

    Article  Google Scholar 

  5. Dominguez, C., Boelens, R., Bonvin, A.M.J.J.: Haddock: a protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society 125, 1731–1737 (2003)

    Article  Google Scholar 

  6. Eswar, N., Marti-Renom, M.A., Webb, B., Madhusudhan, M.S., Eramian, D., Shen, M., Pieper, U., Sali, A.: Comparative protein structure modeling with modeller. Current Protocols in Bioinformatics Supp. 15 (2006)

    Google Scholar 

  7. Fernández-Recio, J., Totrov, M., Abagyan, R.: Identification of protein-protein interaction sites from docking energy landscapes. Journal of Molecular Biology 335(3), 843–865 (2004)

    Article  Google Scholar 

  8. Guo, F., Li, S.C., Wang, L.: P-Binder: A System for the Protein-Protein Binding Sites Identification. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds.) ISBRA 2012. LNCS, vol. 7292, pp. 127–138. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Heifetz, A., Katchalski-Katzir, E., Eisenstein, M.: Electrostatics in protein-protein docking. Protein Science 11(3), 571–587 (2002)

    Article  Google Scholar 

  10. Holtby, D., Li, S.C., Li, M.: LoopWeaver – Loop Modeling by the Weighted Scaling of Verified Proteins. In: Chor, B. (ed.) RECOMB 2012. LNCS, vol. 7262, pp. 113–126. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Hwang, H., Vreven, T., Janin, J., Weng, Z.: Protein-protein docking benchmark version 4.0. Proteins 78, 3111–3114 (2010)

    Article  Google Scholar 

  12. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  13. Konc, J., Janežič, D.: Probis algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26(9), 1160–1168 (2010)

    Article  Google Scholar 

  14. Krivov, G.G., Shapovalov, M.V., Dunbrack, R.L.: Improved prediction of protein side-chain conformations with scwrl4. Proteins 77(4), 778–795 (2009)

    Article  Google Scholar 

  15. de Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Recent Developments in Statistics, pp. 133–146. North Holland Publishing Company (1977)

    Google Scholar 

  16. Lindahl, E., Hess, B., Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7(8), 306–317 (2001)

    Google Scholar 

  17. Liu, S., Gao, Y., Vakser, I.: Dockground protein-protein docking decoy set. Bioinformatics 24, 2634–2635 (2008)

    Article  Google Scholar 

  18. Lyskov, S., Gray, J.: The rosettadock server for local protein-protein docking. Nucleic Acids Research 36, W233–W238 (2008)

    Google Scholar 

  19. Mashiach, E., Nussinov, R., Wolfson, H.J.: Fiberdock: Flexible induced-fit backbone refinement in molecular docking. Proteins 78(6), 1503–1519 (2009)

    Google Scholar 

  20. Neuvirth, H., Raz, R., Schreiber, G.: Promate: a structure based prediction program to identify the location of protein-protein binding sites. Journal of Molecular Biology 338, 181–199 (2004)

    Article  Google Scholar 

  21. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: Geometry-based flexible and symmetric protein docking. Proteins 60(2), 224–231 (2005)

    Article  Google Scholar 

  22. Schneidman-Duhovny, D., Nussinov, R., Wolfson, H.J.: Automatic prediction of protein interactions with large scale motion. Proteins 69, 764–773 (2007)

    Article  Google Scholar 

  23. Shulman-Peleg, A., Nussinov, R., Wolfson, H.J.: Siteengines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Research 1(33), W337–W341 (2005)

    Google Scholar 

  24. Wang, G., Dunbrack, R.L.: Pisces: a protein sequence culling server. Bioinformatics 19(2), 1589–1591 (2003)

    Article  Google Scholar 

  25. Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. Journal of the ACM 53, 533–557 (2006)

    Article  MathSciNet  Google Scholar 

  26. Yang, Y., Zhou, Y.: Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72, 793–803 (2008)

    Article  Google Scholar 

  27. Zhang, C.: Extracting contact energies from protein structures: A study using a simplified model. Proteins 31(3), 299–308 (1998)

    Article  Google Scholar 

  28. Zhang, C., Vasmatzis, G., Cornette, J.L., DeLisi, C.: Determination of atomic desolvation energies from the structures of crystallized protein. Journal of Molecular Biology 267(3), 707–726 (1997)

    Article  Google Scholar 

  29. Zhang, J., Wang, Q., Barz, B., He, Z., Kosztin, I., Shang, Y., Xu, D.: Mufold: A new solution for protein 3d structure prediction. Proteins 78, 1137–1152 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, F., Li, S.C., Ma, W., Wang, L. (2013). Detecting Protein Conformational Changes in Interactions via Scaling Known Structures. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics