Skip to main content

Boosting Prediction Performance of Protein-Protein Interaction Hot Spots by Using Structural Neighborhood Properties

(Extended Abstract)

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Binding of one protein to another in a highly specific manner to form stable complexes is critical in most biological processes, yet the mechanisms involved in the interaction of proteins are not fully clear. The identification of hot spots, a small subset of binding interfaces that account for the majority of binding free energy, is becoming increasingly important in understanding the principles of protein interactions. Despite experiments like alanine scanning mutagenesis and a variety of computational methods have been applied to this problem, comparative studies suggest that the development of accurate and reliable solutions is still in its infant stage.

We developed PredHS (Prediction of Hot Spots), a computational method that can effectively identify hot spots on protein binding interfaces by using 38 optimally chosen properties. The optimal combination of features was selected from a set of 324 novel structural neighborhood properties by a two-step feature selection method consisting of a random forest algorithm and a sequential backward elimination method. We evaluated the performance of PredHS using a benchmark of 265 alanine-mutated interface residues (Dataset I) and a trimmed subset (Dataset II) with 10-fold cross validation. Compared with the state of the art approaches, PredHS achieves a significant improvement on the prediction quality, which stems from the new structural neighborhood properties, the novel way of feature generation as well as the selection power of the proposed two-step method. We further validated the capability of our method by an independent test and obtained promising results.

The PredHS web server and supplementary data are available at http://admis.tongji.edu.cn/predhs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B.D., et al.: Molecular Biology of the Cell. Garland, New York (1989)

    Google Scholar 

  2. Clackson, T., Wells, J.A.: A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995)

    Article  Google Scholar 

  3. Bogan, A.A., Thorn, K.S.: Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9 (1998)

    Article  Google Scholar 

  4. Moreira, I.S., et al.: Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins 68, 803–812 (2007)

    Article  Google Scholar 

  5. Li, J., Liu, Q.: ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Bioinformatics 25, 743–750 (2009)

    Article  Google Scholar 

  6. DeLano, W.L.: Unraveling hot spots in binding interfaces: progress and challenges. Current Opinion in Structural Biology 12, 14–20 (2002)

    Article  Google Scholar 

  7. Massova, I., Kollman, P.A.: Computational Alanine Scanning To Probe Protein-Protein Interactions: A Novel Approach To Evaluate Binding Free Energies. J. Am. Chem. Soc. 120, 9401–9409 (1998)

    Article  Google Scholar 

  8. Huo, S., et al.: Computational Alanine Scanning of the 1:1 Human Growth Hormone-Receptor Complex. J. Comput. Chem. 23, 15–27 (2002)

    Article  MathSciNet  Google Scholar 

  9. Grosdidier, S., Fernández-Recio, J.: Identification of hot-spot residues in protein-protein interactions by computational docking. BMC Bioinformatics 9, 447 (2008)

    Article  Google Scholar 

  10. Brenke, R., et al.: Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25(5), 621–627 (2009)

    Article  Google Scholar 

  11. Guerois, R., et al.: Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More Than 1000 Mutations. J. Mol. Biol. 320, 369–387 (2002)

    Article  Google Scholar 

  12. Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. 99(22), 14116–14121 (2002)

    Article  Google Scholar 

  13. Ofran, Y., Rost, B.: Protein-Protein Interaction Hotspots Carved into Sequences. PLoS Comput. Biol. 3(7), e119 (2007)

    Google Scholar 

  14. Darnell, S.J., et al.: An automated decision-tree approach to predicting protein interaction hot spots. Proteins 68, 813–823 (2007)

    Article  Google Scholar 

  15. Cho, K., et al.: A feature-based approach to modeling protein-protein interaction hot spots. Nucleic Acids Research 37(8), 2672–2687 (2009)

    Article  Google Scholar 

  16. Barber, C.B., et al.: The Quickhull algorithm for convex hulls. ACM Ttransactions on Mathematical Software 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xia, J., et al.: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinformatics 11, 174 (2010)

    Article  Google Scholar 

  18. Zhu, X., Mitchell, J.C.: KFC2: A knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 79, 2671–2683 (2011)

    Article  Google Scholar 

  19. Assi, S.A., et al.: PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces. Nucleic Acids Research 38(6), e86 (2009)

    Google Scholar 

  20. Tuncbag, N., et al.: Analysis and network representation of hotspots in protein interfaces using minimum cut trees. Proteins 78, 2283–2294 (2010)

    Article  Google Scholar 

  21. Tuncbag, N., et al.: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12), 1513–1520 (2009)

    Article  Google Scholar 

  22. Thorn, K.S., Bogan, A.A.: ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17, 284–285 (2001)

    Article  Google Scholar 

  23. Fischer, T., et al.: The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics 19, 1453–1454 (2003)

    Article  Google Scholar 

  24. Chan, C.H., et al.: Relationship between local structural entropy and protein thermostability. Proteins 57, 684–691 (2004)

    Article  Google Scholar 

  25. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  26. Liang, S., Grishin, N.V.: Effective scoring function for protein sequence design. Proteins 54, 271–281 (2004)

    Article  Google Scholar 

  27. Liang, S., et al.: Consensus scoring for enriching near-native structures from protein-rotein docking decoys. Proteins 75, 397–403 (2009)

    Article  Google Scholar 

  28. Hartshorn, M.J.: AstexViewer: a visualisation aid for structure-based drug design. J. Comput. Aided Mol. Des. 16, 871–881 (2002)

    Article  Google Scholar 

  29. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2, 18–22 (2002)

    Google Scholar 

  30. Wang, L., et al.: Prediction of hot spots in protein interfaces using a random forest model with hybrid features. Protein Engineering, Design & Selection 25(3), 119–126 (2012)

    Article  Google Scholar 

  31. Kvansakul, M., et al.: Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. EMBO J. 20(19), 5342–5346 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, L., Guan, J., Wei, X., Yi, Y., Zhou, S. (2013). Boosting Prediction Performance of Protein-Protein Interaction Hot Spots by Using Structural Neighborhood Properties. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics