Skip to main content

Fast and Accurate Calculation of Protein Depth by Euclidean Distance Transform

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

The depth of each atom/residue in a protein structure is a key attribution that has been widely used in protein structure modeling and function annotation. However, the accurate calculation of depth is time consuming. Here, we propose to use the Euclidean distance transform (EDT) to calculate the depth, which conveniently converts the protein structure to a 3D gray-scale image with each pixel labeling the minimum distance of the pixel to the surface of the molecule (i.e. the depth). We tested the proposed EDT method on a set of 261 non-redundant protein structures. The data show that the EDT method is 2.6 times faster than the widely used method by Chakravarty and Varadarajan. The depth value by EDT method is also highly accurate, which is almost identical to the depth calculated by exhaustive search (Pearson’s correlation coefficient≈1). We believe the EDT-based depth calculation program can be used as an efficient tool to assist the studies of protein fold recognition and structure-based function annotation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramachandran, G.N., Sasisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–438 (1968)

    Article  Google Scholar 

  2. Xu, D., Zhang, Y.: Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS One 4(12), e8140 (2009)

    Google Scholar 

  3. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)

    Article  Google Scholar 

  4. Chakravarty, S., Varadarajan, R.: Residue depth: a novel parameter for the analysis of protein structure and stability. Structure 7(7), 723–732 (1999)

    Article  Google Scholar 

  5. Zhou, H., Zhou, Y.: Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58(2), 321–328 (2005)

    Article  Google Scholar 

  6. Liu, S., Zhang, C., Liang, S., Zhou, Y.: Fold recognition by concurrent use of solvent accessibility and residue depth. Proteins 68(3), 636–645 (2007)

    Article  Google Scholar 

  7. Wu, S., Zhang, Y.: MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72(2), 547–556 (2008)

    Article  Google Scholar 

  8. Roy, A., Yang, J., Zhang, Y.: COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 40(Web Server issue), W471–W477 (2012)

    Google Scholar 

  9. Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)

    Article  Google Scholar 

  10. Zhang, H., Zhang, T., Chen, K., Shen, S., Ruan, J., Kurgan, L.: Sequence based residue depth prediction using evolutionary information and predicted secondary structure. BMC Bioinformatics 9, 388 (2008)

    Article  Google Scholar 

  11. Yuan, Z., Wang, Z.X.: Quantifying the relationship of protein burying depth and sequence. Proteins 70(2), 509–516 (2008)

    Article  Google Scholar 

  12. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    Article  Google Scholar 

  13. Xu, D., Li, H.: Euclidean Distance Transform of Digital Images in Arbitrary Dimensions. In: Zhuang, Y.-T., Yang, S.-Q., Rui, Y., He, Q. (eds.) PCM 2006. LNCS, vol. 4261, pp. 72–79. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Choi, W.P., Lam, K.M., Siu, W.C.: Extraction of the Euclidean skeleton based on a connectivity criterion. Pattern Recognition 36(3), 721–729 (2003)

    Article  MATH  Google Scholar 

  15. Shih, F.Y., Wu, Y.T.: Three-dimensional Euclidean distance transformation and its application to shortest path planning. Pattern Recognition 37(1), 79–92 (2004)

    Article  MATH  Google Scholar 

  16. Xu, D., Li, H.: Shape analysis of volume models by Euclidean distance transform and moment invariants. In: 10th IEEE International Conference on Computer-Aided Design and Computer Graphics, pp. 437–440 (2007)

    Google Scholar 

  17. Tan, K.P., Varadarajan, R., Madhusudhan, M.S.: DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins. Nucleic Acids Res. 39(Web Server issue), W242–W248 (2011)

    Google Scholar 

  18. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  19. Wu, S., Zhang, Y.: LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35(10), 3375–3382 (2007)

    Article  Google Scholar 

  20. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  21. Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)

    Article  Google Scholar 

  22. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  23. Zhang, Y., Kolinski, A., Skolnick, J.: TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys. J. 85(2), 1145–1164 (2003)

    Article  Google Scholar 

  24. Roy, A., Zhang, Y.: Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure 20(6), 987–997 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, D., Li, H., Zhang, Y. (2013). Fast and Accurate Calculation of Protein Depth by Euclidean Distance Transform. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics