Skip to main content

SPARSE: Quadratic Time Simultaneous Alignment and Folding of RNAs without Sequence-Based Heuristics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Motivation: There is increasing evidence of pervasive transcription, resulting in hundreds of thousands of ncRNAs of unknown function. Standard computational analysis tasks for inferring functional annotations like clustering require fast and accurate RNA comparisons based on sequence and structure similarity. The gold standard for the latter is Sankoff’s algorithm [3], which simultaneously aligns and folds RNAs. Because of its extreme time complexity of O(n 6), numerous faster “Sankoff-style” approaches have been suggested. Several such approaches introduce heuristics based on sequence alignment, which compromises the alignment quality for RNAs with sequence identities below 60% [1]. Avoiding such heuristics, as e.g. in LocARNA [4], has been assumed to prohibit time complexities better than O(n 4), which strongly limits large-scale applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gardner, P.P., Wilm, A., Washietl, S.: A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res. 33(8), 2433–2439 (2005)

    Article  Google Scholar 

  2. Hofacker, I.L., Bernhart, S.H., Stadler, P.F.: Alignment of RNA base pairing probability matrices. Bioinformatics 20(14), 2222–2227 (2004)

    Article  Google Scholar 

  3. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 3(4), e65 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Will, S., Schmiedl, C., Miladi, M., Möhl, M., Backofen, R. (2013). SPARSE: Quadratic Time Simultaneous Alignment and Folding of RNAs without Sequence-Based Heuristics. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics