Skip to main content

NP-MuScL: Unsupervised Global Prediction of Interaction Networks from Multiple Data Sources

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Inference of gene interaction networks from expression data usually focuses on either supervised or unsupervised edge prediction from a single data source. However, in many real world applications, multiple data sources, such as microarray and ISH measurements of mRNA abundances, are available to offer multi-view information about the same set of genes. We propose NP-MuScL (nonparanormal multi-source learning) to estimate a gene interaction network that is consistent with such multiple data sources, which are expected to reflect the same underlying relationships between the genes. NP-MuScL casts the network estimation problem as estimating the structure of a sparse undirected graphical model. We use the semiparametric Gaussian copula to model the distribution of the different data sources, with the different copulas sharing the same precision (i.e., inverse covariance) matrix, and we present an efficient algorithm to estimate such a model in the high dimensional scenario. Results are reported on synthetic data, where NP-MuScL outperforms baseline algorithms significantly, even in the presence of noisy data sources. Experiments are also run on two real-world scenarios: two yeast microarray data sets, and three Drosophila embryonic gene expression data sets, where NP-MuScL predicts a higher number of known gene interactions than existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Segal, E., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  2. Basso, K., Magolin, A., Califano, A.: Reverse engineering of regulatory networks in human b cells. Nature Genetics 37, 382–390 (2005)

    Article  Google Scholar 

  3. Morrissey, E.R., Juárez, M.A., Denby, K.J., Burroughs, N.J.: On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 26(18), 2305–2312 (2010)

    Article  Google Scholar 

  4. Carro, M.S., Califano, A., Iavarone, A.: The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010)

    Article  Google Scholar 

  5. Wang, K., Saito, M., Califano, A.: Genome-wide identification of post-translational modulators of transcription factor activity in human b-cells. Nature Biotechnology 27(9), 829–839 (2009)

    Article  Google Scholar 

  6. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Annals of Statistics (2006)

    Google Scholar 

  7. Banerjee, O., Ghaoui, L.E., d’Aspremont, A., Natsoulis, G.: Convex optimization techniques for fitting sparse gaussian graphical models. In: ICML (2006)

    Google Scholar 

  8. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics (2007)

    Google Scholar 

  9. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein–protein interactions. In: ISMB, vol. 21, pp. i38–i46 (2005)

    Google Scholar 

  10. Wang, Y., Joshi, T., Zhang, X.S., Xu, D., Chen, L.: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22(19), 2413–2420 (2006)

    Article  Google Scholar 

  11. Ahmed, A., Xing, E.P.: Tesla: Recovering time-varying networks of dependencies in social and biological studies. Proc. Natl. Acad. Sci. 106, 11878–11883 (2009)

    Article  Google Scholar 

  12. Xu, Q., Hu, D.H., Yang, Q., Xue, H.: Simpletrppi: A simple method for transferring knowledge between interaction networks for ppi prediction. In: Bioinformatics and Biomedicine Workshops (2012)

    Google Scholar 

  13. Katenka, N., Kolaczyk, E.D.: Inference and characterization of multi-attribute networks with application to computational biology. Arxiv (2012)

    Google Scholar 

  14. Honorio, J., Samaras, D.: Multi-task learning of gaussian graphical models. In: ICML (2011)

    Google Scholar 

  15. Rothman, A.J., Bickel, P.J., Levina, E., Zhu, J.: Sparse permutation invariant covariance estimation. Electronic Journal of Statistics 2 (2008)

    Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Ravikumar, P., Liu, H., Lafferty, J., Wasserman, L.: Spam: Sparse additive models. In: NIPS (2007)

    Google Scholar 

  18. Liu, H., Lafferty, J., Wasserman, L.: The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research 10, 2295–2328 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Balakrishnan, S., Puniyani, K., Lafferty, J.: Sparse additive functional and kernel cca. In: ICML (2012)

    Google Scholar 

  20. Cho, R., Campbell, M., Winzeler, E., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2(1), 65–73 (1998)

    Article  Google Scholar 

  21. Hughes, T., Marton, M., Jones, A., Roberts, C., Friend, S.: Functional discovery via a compendium of expression profiles. Cell 102(1) (2000)

    Google Scholar 

  22. Hibbs, M., Hess, D., Myers, C., Troyanskaya, O.: Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics (2007)

    Google Scholar 

  23. Stark, C., Breitkreutz, B., Chatr-Aryamontri, A., Boucher, L., Tyers, M.: The biogrid interaction database: update. Nucleic Acids Res. 39(D), 698–704 (2011)

    Google Scholar 

  24. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM (2003)

    Google Scholar 

  25. Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S., Richards, S., Celniker, S., Rubin, G.: Systematic determination of patterns of gene expression during drosophila embryogenesis. Genome Biol. 3(2), 14 (2002)

    Article  Google Scholar 

  26. Puniyani, K., Xing, E.P.: Inferring Gene Interaction Networks from ISH Images via Kernelized Graphical Models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 72–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puniyani, K., Xing, E.P. (2013). NP-MuScL: Unsupervised Global Prediction of Interaction Networks from Multiple Data Sources. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics