Skip to main content

The Small-World Phenomenon Applied to a Self-adaptive Resources Selection Model

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2013)

Abstract

Small-world property is found in a wide range of natural, biological, social or transport networks. The main idea of this phenomenon is that seemingly distant nodes actually have very short path lengths due to the presence of a small number of shortcut edges running between clusters of nodes. In the present work, we apply this principle for solving the resources selection problem in grid computing environments (distributed systems composed by heterogeneous and geographically dispersed resources). The proposed model expects to find the most efficient resources for a particular grid application in a short number of steps. It also provides a self-adaptive ability for dealing with environmental changes. Finally, this selection model is tested in a real grid infrastructure. From the results obtained it is concluded that both a reduction in execution time and an increase in the successfully completed tasks rate are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batista, D.M., Da Fonseca, L.S.: A Survey of Self-adaptive Grids. IEEE Communications Magazine 48(7), 94–100 (2010)

    Article  Google Scholar 

  2. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov, D.: Adaptive Computing on the Grid Using AppLeS. IEEE Transactions on Parallel and Distributed Systems 14(4), 369–382 (2003)

    Article  Google Scholar 

  3. Du, H., Wu, X., Zhuang, J.: Small-World Optimization Algorithm for Function Optimization. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006, Part II. LNCS, vol. 4222, pp. 264–273. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Erdos, P., Rény, A.: On the Evolution of Random Graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960)

    Google Scholar 

  5. Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 1–4. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Foster, I.: What is the Grid? A three Point Checklist. GRIDtoday 1(6), 22–25 (2002)

    MathSciNet  Google Scholar 

  7. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution in Grids. Software-Practice & Experience 34(7), 631–651 (2004)

    Article  Google Scholar 

  8. Keung, H.N.L.C., Dyson, J.R.D., Jarvis, S.A., Nudd, G.R.: Self- Adaptive and Self-Optimising Resource Monitoring for Dynamic Grid Environments. In: DEXA 2004, Proceedings of the Database and Expert Systems Applications, 15th International Workshop, Washington DC, USA, pp. 689–693 (2004)

    Google Scholar 

  9. Kleinberg, J.: The Small-world Phenomenon: an Algorithm Perspective. In: Proceedings of The Thirty-second Annual ACM Symposium on Theory of Computing, Portland, OR, USA, pp. 163–170 (2000)

    Google Scholar 

  10. Newman, M., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Network. Princeton University Press (2006)

    Google Scholar 

  11. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipies in C. Press Syndicate of the University of Cambridge, New York (1992)

    Google Scholar 

  12. Vadhiyar, S.S., Dongarra, J.J.: Self Adaptivity in Grid Computing. Concurrency and Computation: Practice and Experience 17(2-4), 235–257 (2005)

    Article  Google Scholar 

  13. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-world Networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  14. Wrzesinska, G., Maasen, J., Bal, H.E.: Self-adaptive Applications on the Grid. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Jose, California, USA, pp. 121–129 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Botón-Fernández, M., Castrillo, F.P., Vega-Rodríguez, M.A. (2013). The Small-World Phenomenon Applied to a Self-adaptive Resources Selection Model. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics