Skip to main content

Evolving Non-Intrusive Load Monitoring

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7835))

Abstract

Non-intrusive load monitoring (NILM) identifies used appliances in a total power load according to their individual load characteristics. In this paper we propose an evolutionary optimization algorithm to identify appliances, which are modeled as on/off appliances. We evaluate our proposed evolutionary optimization by simulation with Matlab, where we use a random total load and randomly generated power profiles to make a statement of the applicability of the evolutionary algorithm as optimization technique for NILM. Our results shows that the evolutionary approach is feasible to be used in NILM systems and can reach satisfying detection probabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranski, M., Voss, J.: Genetic algorithm for pattern detection in nialm systems. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3462–3468 (2004)

    Google Scholar 

  2. Bijker, A., Xia, X., Zhang, J.: Active power residential non-intrusive appliance load monitoring system. In: AFRICON 2009, pp. 1–6 (September 2009)

    Google Scholar 

  3. Chang, H.H., Chien, P.C., Lin, L.S., Chen, N.: Feature extraction of non-intrusive load-monitoring system using genetic algorithm in smart meters. In: IEEE 8th International Conference on e-Business Engineering (ICEBE), pp. 299–304 (2011)

    Google Scholar 

  4. Chang, H.H., Lin, C.L., Lee, J.K.: Load identification in nonintrusive load monitoring using steady-state and turn-on transient energy algorithms. In: 14th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 27–32 (2010)

    Google Scholar 

  5. Elmenreich, W., Egarter, D.: Design guidelines for smart appliances. In: Proc. 10th International Workshop on Intelligent Solutions in Embedded Systems (WISES 2012), pp. 76–82 (2012)

    Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  8. Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  9. Hoff, A., Løkketangen, A., Mittet, I.: Genetic Algorithms for 0/1 Multidimensional Knapsack Problems. In: Proceedings Norsk Informatikk Konferanse, NIK 1966 (1996)

    Google Scholar 

  10. Kolter, J.Z., Johnson, M.J.: REDD: A Public Data Set for Energy Disaggregation Research. In: Proceedings of the SustKDD Workshop on Data Mining Applications in Sustainability (2011)

    Google Scholar 

  11. Lagoudakis, M.G.: The 0-1 Knapsack Problem An Introductory Survey. Technical report

    Google Scholar 

  12. Leung, S.K.J., Ng, S.H.K., Cheng, W.M.J.: Identifying Appliances Using Load Signatures and Genetic Algorithms. In: International Conference on Electrical Engineering, ICEE (2007)

    Google Scholar 

  13. Lin, Y.H., Tsai, M.S., Chen, C.S.: Applications of fuzzy classification with fuzzy c-means clustering and optimization strategies for load identification in nilm systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 859–866 (2011)

    Google Scholar 

  14. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc., New York (1990)

    MATH  Google Scholar 

  15. Singh, R.P.: Solving 0/1 Knapsack problem using Genetic Algorithms. In: IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 591–595. IEEE (2011)

    Google Scholar 

  16. Suzuki, K., Inagaki, S., Suzuki, T., Nakamura, H., Ito, K.: Nonintrusive appliance load monitoring based on integer programming. In: SICE Annual Conference, pp. 2742–2747 (2008)

    Google Scholar 

  17. Cotta, C., Troya, J.: A hybrid genetic algorithm for the 0-1 multiple knapsack problem. Artificial Neural Nets and Genetic Algorithms 3, 251–255 (1998)

    Google Scholar 

  18. Zeifman, M., Roth, K.: Nonintrusive appliance load monitoring: Review and outlook. IEEE Transactions on Consumer Electronics 57(1), 76–84 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Egarter, D., Sobe, A., Elmenreich, W. (2013). Evolving Non-Intrusive Load Monitoring. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics