Skip to main content

ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7833))

Abstract

The task of predicting protein functions using computational techniques is a major research area in the field of bioinformatics. Casting the task into a classification problem makes it challenging, since the classes (functions) to be predicted are hierarchically related, and a protein can have more than one function. One approach is to produce a set of local classifiers; each is responsible for discriminating between a subset of the classes in a certain level of the hierarchy. In this paper we tackle the hierarchical classification problem in a local fashion, by learning an ensemble of Bayesian network classifiers for each class in the hierarchy and combining their outputs with four alternative methods: a) selecting the best classifier, b) majority voting, c) weighted voting, and d) constructing a meta-classifier. The ensemble is built using ABC-Miner, our recently introduced Ant-based Bayesian Classification algorithm. We use different types of protein representations to learn different classification models. We empirically evaluate our proposed methods on an ageing-related protein dataset created for this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binns, D., Dimmer, E., Huntley, R., Barrell, D., O’Donovan, C., Apweiler, R.: QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046 (2009)

    Article  Google Scholar 

  2. de Campos, L.M., Fernandez-Luna, J.M., Gamez, J.A., Puerta, J.M.: Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning 31(3), 291–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, J., Greiner, R.: Learning Bayesian Belief Network Classifiers: Algorithms and System. In: Stroulia, E., Matwin, S. (eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 141–151. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Costa, E.P., Lorena, A.C., Carvalho, A.C.P.L.F., Freitas, A.A.: Top-Down Hierarchical Ensembles of Classifiers for Predicting G-Protein-Coupled-Receptor Functions. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 35–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Daly, R., Shen, Q., Aitken, S.: Learning bayesian networks: Approaches and issues. Knowledge Engineering Reviews 26(2), 99–157 (2011)

    Article  Google Scholar 

  6. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press (2004)

    Google Scholar 

  7. Freitas, A.A., de Carvalho, A.C.P.F.L.: A tutorial on hierarchical classification with applications in bioinformatics. In: Research and Trends in Data Mining Technologies and Applications, pp. 175–208 (2007)

    Google Scholar 

  8. Huang, D., Sherman, B., Lempicki, R.: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocol 4, 44–57 (2009)

    Google Scholar 

  9. Jiang, L., Wang, D., Cai, Z., Yan, X.: Survey of Improving Naive Bayes for Classification. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 134–145. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. de Magalhaes, J., Budovsky, A., Lehmann, G., Costa, J., Li, Y., Church, V.F.G.: The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell, 65–72 (2009)

    Google Scholar 

  11. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Machine Learning 82(1), 1–42 (2011)

    Article  Google Scholar 

  12. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE TEC 6, 321–332 (2002)

    Google Scholar 

  13. Pinto, P.C., Nägele, A., Dejori, M., Runkler, T.A., Sousa, J.M.C.: Using a local discovery ant algorithm for Bayesian network structure learning. IEEE Transactions on Evolutionary Computation 13(4), 767–779 (2009)

    Article  Google Scholar 

  14. Salama, K.M., Freitas, A.A.: ABC-Miner: An Ant-Based Bayesian Classification Algorithm. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 13–24. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Schietgat, L., Vens, C., Struyf, J., Blockeel, H., Kocev, D., Dzeroski, S.: Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics 11(1) (2010)

    Google Scholar 

  16. Secker, A., Davies, M.N., Freitas, A.A., Clark, E., Timmis, J., Flower, D.R.: Hierarchical classification of GPCR with data-driven selection of attributes and classifiers. International Journal of Data Mining and Bioinformatics 4(2), 191–210 (2010)

    Article  Google Scholar 

  17. Secker, A., Davies, M.N., Freitas, A.A., Timmis, J., Mendao, M., Flower, D.R.: An experimental comparison of classification algorithms for the hierarchical prediction of protein function. Expert Update (BCS-SGAI Magazine) 9, 17–22 (2007)

    Google Scholar 

  18. Silla, C.N., Freitas, A.A.: Selecting different protein representations and classification algorithms in hierarchical protein function prediction. Intelligent Data Analysis 15(6), 979–999 (2011)

    Google Scholar 

  19. Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery 22(1-2), 31–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    Google Scholar 

  21. The UniProt Consortium: The Universal Protein Resource (Uniprot). Nucleic Acids Research 38, D142–D148 (2010)

    Google Scholar 

  22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2010)

    Google Scholar 

  23. Wu, Y., McCall, J., Corne, D.: Two novel Ant Colony Optimization approaches for Bayesian network structure learning. In: International Conference on Evolutionary Computation (CEC), pp. 1–7 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salama, K.M., Freitas, A.A. (2013). ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics