Skip to main content

Emergence of Motifs in Model Gene Regulatory Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7833))

Abstract

Gene regulatory networks arise in all living cells, allowing the control of gene expression patterns. The study of their circuitry has revealed that certain subgraphs of interactions or motifs appear at anomalously high frequencies. We investigate here whether the overrepresentation of these motifs can be explained by the functional capabilities of these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have a prescribed function. Markov Chain Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interaction structure. We conclude that different classes of network motifs are found depending on the functional constraint (multi-stability or oscillatory behaviour) imposed on the system evolution. The discussed computational framework can also be used for predicting regulatory interactions, if only the experimental gene expression pattern is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nature Reviews Genetics 8, 450 (2007)

    Article  Google Scholar 

  2. Burda, Z., Krzywicki, A., Martin, O.C., Zagorski, M.: Proc. Natl. Acad. Sci. U.S.A. 108, 17263 (2011)

    Google Scholar 

  3. Elowitz, M., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335 (2000)

    Article  Google Scholar 

  4. Gardner, T., Cantor, C., Collins, J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339 (2000)

    Article  Google Scholar 

  5. Gerstein, M.B., et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91 (2012)

    Article  Google Scholar 

  6. Herrgard, M., Covert, M., Palsson, B.: Reconstruction of microbial transcriptional regulatory networks. Current Opinion in Biotechnology 15, 70 (2004)

    Article  Google Scholar 

  7. Hu, Z., Killion, P., Iyer, V.: Genetic reconstruction of a functional transcriptional regulatory network. Nature Genetics 39, 683 (2007)

    Article  Google Scholar 

  8. Lee, T., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799 (2002)

    Article  Google Scholar 

  9. Ma, H., et al.: An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Research 32, 6643 (2004)

    Article  Google Scholar 

  10. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910 (2002)

    Article  Google Scholar 

  11. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087 (1953)

    Article  Google Scholar 

  12. Ptashne, M.: A Genetic Switch: Phage λ Revisited. Cold Harbor Spring Laboratory Press, NY (2004)

    Google Scholar 

  13. Salgado, H., et al.: Regulondb (version 5.0): Escherichia coli k-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Research 34, D394 (2006)

    Google Scholar 

  14. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31, 64 (2002)

    Article  Google Scholar 

  15. Zagorski, M., Krzywicki, A., Martin, O.C.: Edge usage, motifs and regulatory logic for cell cycling genetic networks. Phys. Rev. E 87, 012727 (2013)

    Google Scholar 

  16. Zhu, J., et al.: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 40, 854 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zagórski, M. (2013). Emergence of Motifs in Model Gene Regulatory Networks. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics