Skip to main content

A Block Coclustering Model for Pattern Discovering in Users’ Preference Data

  • Conference paper
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2011)

Abstract

This paper provides a principled probabilistic co-clustering framework for missing value prediction and pattern discovery in users’ preference data. We extend the original dyadic formulation of the Block Mixture Model(BMM) in order to take into account explicit users’ preferences. BMM simultaneously identifies user communities and item categories: each user is modeled as a mixture over user communities, which is computed by taking into account users’ preferences on similar items. Dually, item categories are detected by considering preferences given by similar minded users. This recursive formulation highlights the mutual relationships between items and user, which are then used to uncover the hidden block-structure of the data. We next show how to characterize and summarize each block cluster by exploiting additional meta data information and by analyzing the underlying topic distribution, proving the effectiveness of the approach in pattern discovery tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 2003 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: RecSys 2010, pp. 39–46 (2010)

    Google Scholar 

  3. Funk, S.: Netflix update: Try this at home (2006)

    Google Scholar 

  4. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering. In: ICDM 2005, pp. 625–628 (2005)

    Google Scholar 

  5. Gerard, G., Mohamed, N.: Clustering with block mixture models. Pattern Recognition 36(2), 463–473 (2003)

    Article  Google Scholar 

  6. Govaert, G., Nadif, M.: An em algorithm for the block mixture model. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 643–647 (2005)

    Article  Google Scholar 

  7. Hofmann, T., Puzicha, J.: Latent class models for collaborative filtering. In: IJCAI 1999, pp. 688–693 (1999)

    Google Scholar 

  8. Jin, R., Si, L., Zhai, C.: A study of mixture models for collaborative filtering. Inf. Retr. 2006 9(3), 357–382 (2006)

    Article  Google Scholar 

  9. Jin, X., Zhou, Y., Mobasher, B.: Web usage mining based on probabilistic latent semantic analysis. In: KDD 2004, pp. 197–205 (2004)

    Google Scholar 

  10. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: How accuracy metrics have hurt recommender systems. In: ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 1097–1101 (2006)

    Google Scholar 

  11. Porteous, I., Bart, E., Welling, M.: Multi-hdp: a non parametric bayesian model for tensor factorization. In: AAAI 2008, pp. 1487–1490 (2008)

    Google Scholar 

  12. Shan, H., Banerjee, A.: Bayesian co-clustering. In: ICML 2008 (2008)

    Google Scholar 

  13. Shannon, C.E.: Prediction and entropy of printed english. Bell Systems Technical Journal 30, 50–64 (1951)

    MATH  Google Scholar 

  14. Wang, P., Domeniconi, C., Laskey, K.B.: Latent Dirichlet Bayesian Co-Clustering. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 522–537. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting tf-idf term weights as making relevance decisions. ACM Trans. Inf. Syst. 26, 13:1–13:37 (2008)

    Article  Google Scholar 

  16. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW 2005, pp. 22–32 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbieri, N., Costa, G., Manco, G., Ritacco, E. (2013). A Block Coclustering Model for Pattern Discovering in Users’ Preference Data. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2011. Communications in Computer and Information Science, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37186-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37186-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37185-1

  • Online ISBN: 978-3-642-37186-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics