Skip to main content

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 6))

Abstract

GMR sensors are fabricated by following a sort of techniques in a similar fashion to those related to standard CMOS processes. Deposition, patterning and encapsulation steps are found in both parts. However, characteristics related to the specific materials involved in the GMR technology recommend the use of some particular techniques. In this chapter, we focus on these specific methods, while keeping in mind the interest in merging standard CMOS with GMR technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Europractice. Europractice web site, http://www.europractice-ic.com/

  2. Service MOSIS. The MOSIS Service, http://www.mosis.com/

  3. Fermon, C.: Micro- and Nanofabrication Techniques. In: Thornton, M.J., Ziese, M. (eds.) Spin Electronics, pp. 379–395. Springer (2000)

    Google Scholar 

  4. Hartmann, U.: Magnetic Multilayers and Giant Magnetoresistance. Springer (2000)

    Google Scholar 

  5. Hirota, E., Sakakima, H., Inomata, K.: Giant Magneto-Resistance Devices. Springer (2001)

    Google Scholar 

  6. Grünberg, P., Fert, A.: Received the Nobel Prize in Physics (2007), http://www.nobelprize.org/nobel_prizes/physics

  7. Grunberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Layered magnetic-structures - Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986)

    Article  Google Scholar 

  8. Baibich, M.N., Broto, J.M., Fert, A., Nguyen van Dau, F., Petrof, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  Google Scholar 

  9. Dieny, B., Speriosu, V.S., Metin, S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., Wilhoit, D.R.: Magnetotransport properties of magnetically soft spin-valve structures. J. Applied Physics 69, 4774–4779 (1991)

    Article  Google Scholar 

  10. Jaeger, R.C.: Introduction to Microelectronic Fabrication. Addison-Wesley (1993)

    Google Scholar 

  11. Ohring, M.: The Materials Science of Thin Films. Academic Press Inc. (1992)

    Google Scholar 

  12. Cheng, N., Ahn, J.P., Kannan, Krishnan, M.: Epitaxial growth and exchange biasing of PdMn/Fe bilayers grown by ion-beam sputtering. J. Appl. Phys. 89, 6597 (2001)

    Article  Google Scholar 

  13. Schwebel, C., Gautherin, G.: Deposition of thin films by ion beam sputtering: Mechanisms and epitaxial growth. In: AIP Conf. Proc., vol. 167, pp. 237–249 (1988)

    Google Scholar 

  14. Gehanno, V., Freitas, P.P., Veloso, A., Ferreira, J., Almeida, B., Sousa, B., Kling, A., Da Silva, M.F.: Ion beam deposition of Mn-Ir spin valves. IEEE Trans. Magn. 35, 4361–4367 (1999)

    Article  Google Scholar 

  15. Dong, L., Srolovitz, D.J.: Texture development mechanisms in ion beam assisted deposition. J. Appl. Phys. 84, 5261 (1998)

    Article  Google Scholar 

  16. Nordiko Technical Services, UK, http://www.nordiko-tech.com/products.html

  17. Veeco, US, http://www.veeco.com/products/ion-beam.aspx

  18. Ferreira, R., Cardoso, S., Freitas, P.P., Petrova, R., McVitie, S.: Influence of ion beam assisted deposition parameters on the growth of MgO and CoFeB. J. Appl. Phys. 117, 07C117 (2012)

    Google Scholar 

  19. Cardoso, S., Gehanno, V., Ferreira, R., Freitas, P.P.: Ion beam deposition and oxidation of spin-dependent tunnel junctions. IEEE Trans. Magn. 35(5), 2952–2954 (1999)

    Article  Google Scholar 

  20. Schmeusser, S., Hubert, A., Rupp, G.: Ion beam sputtering of magnetoresistive multilayers:Co/Cu and Co-modified Ni81Fe19 systems. IEEE Trans. Magn. 32(5), 4722–4724 (1996)

    Article  Google Scholar 

  21. Quan, J.J., Wolf, S.A., Wadley, H.N.G.: Low energy ion beam assisted deposition of a spin valve. J. Appl. Phys. 101, 074302 (2007)

    Google Scholar 

  22. Harper, J.M.E., Gambino, R.J.: Combined ion beam deposition and etching for thin film studies. J. Vac. Sc. Tech. 16(6), 1901–1905 (1979)

    Article  Google Scholar 

  23. Tang, F., Karabacak, T., Morrow, P., Gaire, C., Wang, G.C., Lu, T.M.: Texture evolution during shadowing growth of isolated Ru columns. Phys. Rev. B 72(16), 1–6 (2005)

    Google Scholar 

  24. Fermento, R., Leitao, D.C., Teixeira, J.M., Pereira, A.M., Carpinteiro, F., Ventura, J., Araujo, J.P., Sousa, J.B.: Structural, magnetic and transport properties of ion beam deposited Co thin films. J. Non-Cryst. Sol. 354(47-51), 5279–5281 (2008)

    Article  Google Scholar 

  25. Rijks, T.G.S.M., Sour, R.L.H., Neerinck, D.G., De Veirman, A.E.M., Coehoorn, R., Kools, J.C.S., Gillies, M.F., de Jonge, W.J.M.: Influence of grain size on the transport properties of Ni80Fe20 and Cu thin films. IEEE Trans. Magn. 31(6), 3865–3867 (1995)

    Article  Google Scholar 

  26. Pierson, H.O.: Handbook of Chemical Vapor Deposition (CVD) - Principles, Technology and Applications, 2nd edn. William Andrew Publishing Notes (1999)

    Google Scholar 

  27. Schlesinger, M., Paunovic, M.: Modern Electroplating. Wiley (2000)

    Google Scholar 

  28. Whitney, T.M., Jiang, J.S., Searson, P.C., Chien, C.L.: Fabrication and magnetic-properties of arrays of metallic nanowires. Science 261(5126), 1316–1319 (1993)

    Article  Google Scholar 

  29. Evans, P.R., Yi, G., Schwarzacher, W.: Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes. Appl. Phys. Lett. 76, 481 (2000)

    Article  Google Scholar 

  30. Schwarzacher, W., Lashmore, D.S.: Giant Magnetoresistance in Electrodeposited Films. IEEE Trans. Magnetics 32, 3133–3153 (1996)

    Article  Google Scholar 

  31. Blondel, A., Meier, J.P., Doudin, B., Ansermet, J.P.: Giant magnetoresistance of nanowiresof multilayers. Appl. Phys. Lett. 65(23), 3019–3021 (1994)

    Article  Google Scholar 

  32. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., Fert, A.: Giant magnetoresistance in magnetic multilayered nanowires. Appl. Phys. Lett. 65(19), 2484–2486 (1994)

    Article  Google Scholar 

  33. Piraux, L., Dubois, S., Duvail, J.L., Ounadjela, K., Fert, A.: Arrays of nanowires of magnetic metals and multilayers: Perpendicular GMR and magnetic properties. J. Mag. Magn. Mater. 175(1-2), 127–136 (1997)

    Article  Google Scholar 

  34. Tang, X.T., Wang, G.C., Shima, M.: Layer thickness dependence of CPP giant magnetoresistance in individual CoNi/Cu multilayer nanowires grown by electrodeposition. Phys. Rev. B 75(13), 134404 (2007)

    Article  Google Scholar 

  35. Wang, H., Wu, Y., Wang, M., Zhang, Y., Li, G., Zhang, L.: Fabrication and magnetotransport properties of ordered sub-100nm pseudo-spin-valve element arrays. Nanotech 17(6), 1651 (2006)

    Article  Google Scholar 

  36. Wang, H.-X., Wu, Y.-C., Zhang, L., Li, J., Zhang, G., Wang, M., Li, Z.: Synthesis and magnetotransport properties of nanometric spin valve arrays fabricated by electrodeposition. J. Phys. D: Appl. Phys. 38(21), 3841 (2005)

    Article  Google Scholar 

  37. Wang, H., Wu, Y., Li, Q., Wang, M., Li, G., Zhang, L.: Synthesis and characterization of FeMn-pinned spin valve arrays. Appl. Phys. Lett. 89(5), 052107–3 (2006)

    Google Scholar 

  38. Jaeger, R.C.: Lithography. In: Introduction to Microelectronic Fabrication, 2nd edn. Prentice Hall, pper Saddle River (2002)

    Google Scholar 

  39. Middleman, S., Hochberg, A.K.: Process Engineering Analysis in Semiconductor Device Fabrication, p. 313. McGraw-Hill (1993)

    Google Scholar 

  40. Leitao, D.C., Macedo, R.J., Silva, A.V., Hoang, D.Q., MacLaren, D.A., McVitie, S., Cardoso, S., Freitas, P.P.: Optimization of exposure parameters for lift-off process of sub-100 features using a negative tone electron beam resist. In: 2012 12th IEEE Conference on Nanotechnology (2012)

    Google Scholar 

  41. Nabiyouni, G.R.: Design and fabrication of nanomagnetic sensors based on electrodeposited GMR materials. Metrology and Measurements Systems  XVI(3), 519–529 (2009)

    Google Scholar 

  42. Okazaki, S., Moers, J.: Lithography. In: Waser, R. (ed.) Nanoelectronics and Information Technology, 2nd edn. Wiley-VCH

    Google Scholar 

  43. Marinho, Z., Cardoso, S., Chaves, R., Ferreira, R., Melo, L.V., Freitas, P.P.: Improving Magnetic Flux Guide Concentrators for MR Sensors. J. Appl. Phys. 109, 07E521 (2011)

    Google Scholar 

  44. Amaral, J., Gaspar, J., Pinto, V., Costa, T., Sousa, N., Cardoso, S., Freitas, P.P.: Measuring brain activity with Magnetoresistive Sensors integrated in Micromachined Probe Needles. Applied Physics A (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leitão, D.C., Amaral, J.P., Cardoso, S., Reig, C. (2013). Microfabrication Techniques. In: Giant Magnetoresistance (GMR) Sensors. Smart Sensors, Measurement and Instrumentation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37172-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37172-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37171-4

  • Online ISBN: 978-3-642-37172-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics