Skip to main content

Mobile Users ECG Signal Processing

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 207))

Abstract

In recent years we have witnessed the growth of a number of multimedia, health, cognitive learning, gaming user applications which include monitoring and processing of the users’ physiological signals, also termed biosignals or vital signs. The acquisition of the biosignals should be non-invasive and should not affect the activities and arousal of the user to achieve relevant results. Developments in mobile devices, e.g. smartphones, tablet PCs, etc. and electrode design have enabled unobtrusive acquisition and processing of biosignals, especially for mobile and non-clinical applications. The paper reviews recently developed non-clinical applications that exploit biosignal information. The paper analyses challenges for digital signal processing that arise from data acquisition from the mobile user are presented with focus on the electrocardiogram (ECG). Influence of the analysed challenges is demonstrated on a selected QRS detection algorithm by using signals from the MIT-BIH Noise stress test database (nstdb). Results confirm that algorithms for processing signals of mobile users need a more thorough preprocessing procedure as opposed to simple band-pass filtering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plesnik, E., Malgina, O., Tasič, J.F., Zajc, M.: Detection of the electrocardiogram fiducial points in the phase space using the euclidian distance measure. Medical Engineering & Physics 34, 524–529 (2012)

    Article  Google Scholar 

  2. Fayn, J., Rubel, P.: Toward a Personal Health Society in Cardiology. IEEE Transactions on Information Technology in Biomedicine 14, 401–409 (2010)

    Article  Google Scholar 

  3. Wartzek, T., Eilebrecht, B., Lem, J., Lindner, H.-J., Leonhardt, S., Walter, M.: ECG on the road: robust and unobtrusive estimation of heart rate. IEEE Transactions on Biomedical Engineering 58, 3112–3120 (2011)

    Article  Google Scholar 

  4. Jung, S.-J., Shin, H.-S., Chung, W.-Y.: Highly Sensitive Driver Health Condition Monitoring System using Nonintrusive Active Electrodes. Sensors and Actuators B: Chemical 171-172, 691–698 (2012)

    Article  Google Scholar 

  5. Agrafioti, F., Gao, J., Hatzinakos, D.: Heart Biometrics: Theory, Methods and Applications. In: Yang, J. (ed.) Biometrics. InTech (2011)

    Google Scholar 

  6. Singh, Y.N., Singh, S.K., Gupta, P.: Fusion of electrocardiogram with unobtrusive biometrics: An efficient individual authentication system. Pattern Recognition Letters 33, 1932–1941 (2012)

    Article  Google Scholar 

  7. Yong, X., Tingting, B., Chunhua, B., Qianli, M.: Design of the Athlete’s Electrocardiogram Monitoring and Evaluation System Based on Wireless Sensor Network. In: 2011 First International Workshop on Complexity and Data Mining (IWCDM), pp. 60–63 (2011)

    Google Scholar 

  8. Xu, L., Zhong, Y., Yin, S., Zhang, Y., Shen, Y., Hao, D., Hu, Y., Zhang, R.: ECG and pulse variability analysis for exercise evaluation. In: 2011 IEEE International Conference on Automation and Logistics (ICAL), pp. 52–57 (2011)

    Google Scholar 

  9. Xu, Y., Liu, G., Hao, M., Wen, W., Huang, X.: Analysis of affective ECG signals toward emotion recognition. Journal of Electronics (China) 27, 8–14 (2010)

    Article  Google Scholar 

  10. Agrafioti, F., Hatzinakos, D., Anderson, A.K.: ECG Pattern Analysis for Emotion Detection. IEEE Transactions on Affective Computing 3, 102–115 (2012)

    Article  Google Scholar 

  11. Morak, J., Kumpusch, H., Hayn, D., Modre-Osprian, R., Schreier, G.: Design and Evaluation of a Telemonitoring Concept Based on NFC-Enabled Mobile Phones and Sensor Devices. IEEE Transactions on Information Technology in Biomedicine 16, 17–23 (2012)

    Article  Google Scholar 

  12. Klingeberg, T., Schilling, M.: Mobile wearable device for long term monitoring of vital signs. Computer Methods and Programs in Biomedicine 106, 89–96 (2012)

    Article  Google Scholar 

  13. HeartCycle Project, http://www.heartcycle.eu/

  14. Chuo, Y., Marzencki, M., Hung, B., Jaggernauth, C., Tavakolian, K., Lin, P., Kaminska, B.: Mechanically Flexible Wireless Multisensor Platform for Human Physical Activity and Vitals Monitoring. IEEE Transactions on Biomedical Circuits and Systems 4, 281–294 (2010)

    Article  Google Scholar 

  15. Bonfiglio, A., Rossi, D.D. (eds.): Wearable Monitoring Systems. Springer, NY (2010)

    Google Scholar 

  16. Zvikhachevskaya, A., Markarian, G., Mihaylova, L.: Quality of Service Consideration for the Wireless Telemedicine and E-Health Services. In: IEEE Wireless Communications and Networking Conference, WCNC 2009, pp. 1–6 (2009)

    Google Scholar 

  17. Varshney, U.: Pervasive Healthcare Computing: EMR/EHR, Wireless and Health Monitoring. Springer, NY (2009)

    Book  Google Scholar 

  18. Kailas, A., Chong, C.-C., Watanabe, F.: From Mobile Phones to Personal Wellness Dashboards. IEEE Pulse 1, 57–63 (2010)

    Article  Google Scholar 

  19. Olla, P.: Mobile Health Solutions for Biomedical Applications. Medical Information Science Reference, NY (2009)

    Book  Google Scholar 

  20. Eilebrecht, B., Wartzek, T., Willkomm, J., Schommartz, A., Walter, M., Leonhardt, S.: Motion Artifact Removal from Capacitive ECG Measurements by Means of Adaptive Filtering. In: Jobbágy, Á. (ed.) 5th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, vol. 37, pp. 902–905. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Mithun, P., Pandey, P.C., Sebastian, T., Mishra, P., Pandey, V.K.: A wavelet based technique for suppression of EMG noise and motion artifact in ambulatory ECG. In: 2011 Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, EMBC, pp. 7087–7090 (2011)

    Google Scholar 

  22. Lee, J., McManus, D.D., Merchant, S., Chon, K.H.: Automatic Motion and Noise Artifact Detection in Holter ECG Data Using Empirical Mode Decomposition and Statistical Approaches. IEEE Transactions on Biomedical Engineering 59, 1499–1506 (2012)

    Article  Google Scholar 

  23. Milanesi, M., Martini, N., Vanello, N., Positano, V., Santarelli, M., Landini, L.: Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals. Medical and Biological Engineering and Computing 46, 251–261 (2008)

    Article  Google Scholar 

  24. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Academic Press, San Diego (2005)

    Google Scholar 

  25. Sayadi, O., Shamsollahi, M.B.: Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction. EURASIP Journal on Advances in Signal Processing, 41274 (2007)

    Google Scholar 

  26. Pal, S., Mitra, M.: Empirical mode decomposition based ECG enhancement and QRS detection. Computers in Biology and Medicine 42, 83–92 (2012)

    Article  Google Scholar 

  27. Zhang, F., Lian, Y.: QRS Detection Based on Morphological Filter and Energy Envelope for Applications in Body Sensor Networks. Journal of Signal Processing Systems 64, 187–194 (2009)

    Article  Google Scholar 

  28. Paul, J.S., Reddy, M.R., Kumar, V.J.: A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG’s. IEEE Transactions on Biomedical Engineering 47, 654–663 (2000)

    Article  Google Scholar 

  29. Li, G., Zeng, X., Lin, J., Zhou, X.: Genetic particle filtering for denoising of ECG corrupted by muscle artifacts. In: 2012 Eighth International Conference on Natural Computation (ICNC), pp. 562–565 (2012)

    Google Scholar 

  30. The MIT-BIH Noise Stress Test Database, http://www.physionet.org/physiobank/database/nstdb/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Plesnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plesnik, E., Zajc, M. (2013). Mobile Users ECG Signal Processing. In: Markovski, S., Gusev, M. (eds) ICT Innovations 2012. ICT Innovations 2012. Advances in Intelligent Systems and Computing, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37169-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37169-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37168-4

  • Online ISBN: 978-3-642-37169-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics