Advertisement

Viewing and Controlling Personal Sensor Data: What Do Users Want?

  • Debjanee Barua
  • Judy Kay
  • Cécile Paris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7822)

Abstract

Personal data from diverse sensors plays a key role in persuasive systems, especially those aiming to help people achieve long term goals. We need to gain an understanding of the ways people would like to capture and manage such data. We report the design and outcomes of a study exploring how people want to keep and control sensor data for long term health goals. We asked about three sensors, for weight, activity and sitting. We chose these for their diversity in terms of tracking progress on means and end goals, short and long term goals and differing sensitivity of the data. Our results show that people want to use and control a personal copy of such data and their preferences vary across different sensors. This points to the need for future persuasive systems to support these forms of user control over their sensor data.

Keywords

Sensor Data Personal Data Mobile Application Data Ownership Term Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahtinen, A., Mattila, E., Vaatanen, A., Hynninen, L., Salminen, J., Koskinen, E., Laine, K.: User experiences of mobile wellness applications in health promotion: User study of wellness diary, mobile coach and selfrelax. In: Pervasive Health, pp. 1–8 (2009)Google Scholar
  2. 2.
    Chatterjee, S., Byun, J., Pottathil, A., Moore, M.N., Dutta, K., Xie, H(Q.): Persuasive Sensing: A Novel In-Home Monitoring Technology to Assist Elderly Adult Diabetic Patients. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 31–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Consolvo, S., Klasnja, P., McDonald, D.W., Avrahami, D., Froehlich, J., LeGrand, L., Libby, R., Mosher, K., Landay, J.A.: Flowers or a robot army?: encouraging awareness & activity with personal, mobile displays. In: Ubicomp, pp. 54–63 (2008)Google Scholar
  4. 4.
    Denning, T., Andrew, A., Chaudhri, R., Hartung, C., Lester, J., Borriello, G., Duncan, G.: Balance: towards a usable pervasive wellness application with accurate activity inference. In: HotMobile 2009, pp. 5:1–5:6 (2009)Google Scholar
  5. 5.
    Dunstan, D., Kingwell, B., Larsen, R., Healy, G., Cerin, E., Hamilton, M., Shaw, J., Bertovic, D., Zimmet, P., Salmon, J., et al.: Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 35(5), 976–983 (2012)CrossRefGoogle Scholar
  6. 6.
    Fogg, B.: A behavior model for persuasive design. In: Persuasive 2009, pp. 40:1–40:7. ACM (2009)Google Scholar
  7. 7.
    Halko, S., Kientz, J.A.: Personality and Persuasive Technology: An Exploratory Study on Health-Promoting Mobile Applications. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 150–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Haskell, W., Lee, I., Pate, R., Powell, K., Blair, S., Franklin, B., Macera, C., Heath, G., Thompson, P., Bauman, A.: Physical activity and public health: updated recommendation for adults from the american college of sports medicine and the american heart association. Medicine and Science in Sports and Exercise 39(8), 1423 (2007)CrossRefGoogle Scholar
  9. 9.
    Kaptein, M., Eckles, D.: Selecting Effective Means to Any End: Futures and Ethics of Persuasion Profiling. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 82–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kaptein, M., Lacroix, J., Saini, P.: Individual Differences in Persuadability in the Health Promotion Domain. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 94–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Kim, S., Kientz, J.A., Patel, S.N., Abowd, G.D.: Are you sleeping?: sharing portrayed sleeping status within a social network. In: CSCW, pp. 619–628 (2008)Google Scholar
  12. 12.
    Klasnja, P., Consolvo, S., Choudhury, T., Beckwith, R., Hightower, J.: Exploring Privacy Concerns about Personal Sensing. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 176–183. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Klasnja, P., Consolvo, S., Pratt, W.: How to evaluate technologies for health behavior change in HCI research. In: CHI 2011, pp. 3063–3072. ACM (2011)Google Scholar
  14. 14.
    Lin, J.J., Mamykina, L., Lindtner, S., Delajoux, G., Strub, H.B.: Fish’n’Steps: Encouraging Physical Activity with an Interactive Computer Game. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 261–278. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Mattila, E., Korhonen, I., Salminen, J., Ahtinen, A., Koskinen, E., Sarela, A., Parkka, J., Lappalainen, R.: Empowering citizens for well-being and chronic disease management with wellness diary. IEEE Trans. IT in Biomed. 14(2), 456–463 (2010)CrossRefGoogle Scholar
  16. 16.
    Mattila, E., Parkka, J., Hermersdorf, M., Kaasinen, J., Vainio, J., Samposalo, K., Merilahti, J., Kolari, J., Kulju, M., Lappalainen, R., Korhonen, I.: Mobile diary for wellness management – results on usage and usability in two user studies. IEEE Trans. IT in Biomed. 12(4), 501–512 (2008)CrossRefGoogle Scholar
  17. 17.
    Orji, R., Mandryk, R.L., Vassileva, J.: Towards a Data-Driven Approach to Intervention Design: A Predictive Path Model of Healthy Eating Determinants. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 203–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Purpura, S., Schwanda, V., Williams, K., Stubler, W., Sengers, P.: Fit4life: The design of a persuasive technology promoting healthy behavior and ideal weight. In: CHI, pp. 423–432 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Debjanee Barua
    • 1
  • Judy Kay
    • 1
  • Cécile Paris
    • 2
  1. 1.School of Information TechnologiesUniversity of SydneyAustralia
  2. 2.CSIRO ICT CentreMarsfieldAustralia

Personalised recommendations