Using Log-Data as a Starting Point to Make eHealth More Persuasive

  • Saskia M. Kelders
  • Julia E. W. C. (Lisette) van Gemert-Pijnen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7822)


Despite the large number of eHealth projects to date and the positive outcomes of evaluation studies, the adherence to eHealth interventions is lower than expected. To understand how persuasive technology can influence the adherence to eHealth interventions process data (log-data) about the usage of technology (system and content) can provide a starting point for employment of persuasive features into the design of technology. The log-data of the usage of an eMental health intervention used as an example in this paper, contained a record of actions taken by each participant with for each action the following information: user-id; action type; action specification; time and day. The log-data showed critical episodes for employment of persuasive components to increase adherence: episodes to determine the willingness to follow a therapy, awareness of their non-coping strategies, adoption of “new” skills for behavior change.


Persuasive Technology eHealth Intervention Public Mental Health Care Persuasive System eHealth Literacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nijland, N., van Gemert-Pijnen, J.E.W.C., Kelders, S.M., Brandenburg, B.J., Seydel, E.R.: Factors Influencing the Use of a Web-Based Application for Supporting the Self-Care of Patients with Type 2 Diabetes: A Longitudinal Study. Journal of Medical Internet Research 13(3) (July-September 2011)Google Scholar
  2. 2.
    Van Gemert-Pijnen, J.E., Nijland, N., Van Limburg, M.A.H., Ossebaard, H.C., Kelders, S.M., Eysenbach, G., Seydel, E.R.: A holistic framework to improve the uptake and impact of eHealth technologies. Journal of Medical Internet Research 13(4) (2011)Google Scholar
  3. 3.
    Black, A.D., Car, J., Pagliari, C., Anandan, C., Cresswell, K., Bokun, T., McKinstry, B., Procter, R., Majeed, A., Sheikh, A.: The impact of eHealth on the quality and safety of health care: a systematic overview. PLoS Med. 8(1), e1000387 (2011)Google Scholar
  4. 4.
    Christensen, H., Reynolds, J., Griffiths, K.M.: The use of e-health applications for anxiety and depression in young people: challenges and solutions. Early Intervention in Psychiatry 5(suppl. 1), 58–62 (2011)CrossRefGoogle Scholar
  5. 5.
    Riper, H., Smit, F., Van der Zanden, R., Conijn, B., Kramer, J., Mutsaers, K.: E-mental health. High tech, high touch, high trust. Programmeringsstudie e-mental health in opdracht van het ministerie van VWS. Trimbos-Instituut, Utrecht, The Netherlands (2007) Google Scholar
  6. 6.
    Glasgow, R.E.: eHealth evaluation and dissemination research. Am. J. Prev. Med. 32(5), S119–S126 (2007)Google Scholar
  7. 7.
    Hesse, B.W., Shneiderman, B.: eHealth research from the user’s perspective. Am. J. Prev. Med. 32(5), S97–S103 (2007)Google Scholar
  8. 8.
    Pagliari, C.: Design and evaluation in eHealth: challenges and implications for an interdisciplinary field. J. Med. Internet Res. 9(2), e15 (2007)Google Scholar
  9. 9.
    Christensen, H., Griffiths, K.M., Farrer, L.: Adherence in internet interventions for anxiety and depression. Journal of medical Internet Research 11(2), e13 (2009)Google Scholar
  10. 10.
    Brouwer, W., Kroeze, W., Crutzen, R., de Nooijer, J., de Vries, N.K., Brug, J., Oenema, A.: Which intervention characteristics are related to more exposure to internet-delivered healthy lifestyle promotion interventions? A systematic review. Journal of Medical Internet Research 13(1), e2 (2011)Google Scholar
  11. 11.
    Schubart, J.R., Stuckey, H.L., Ganeshamoorthy, A., Sciamanna, C.N.: Chronic health conditions and internet behavioral interventions: a review of factors to enhance user engagement. Comput. Inform. Nurs. 29(suppl. 2), TC9–TC20 (2011)Google Scholar
  12. 12.
    Kelders, S.M.: Understanding adherence to web-based interventions. Dissertation University of Twente (2012)Google Scholar
  13. 13.
    Balmford, J., Borland, R., Benda, P.: Patterns of use of an automated interactive personalized coaching program for smoking cessation. J. Med. Internet Res. 10(5), e54 (2008)Google Scholar
  14. 14.
    Binks, M., van Mierlo, T.: Utilization patterns and user characteristics of an ad libitum Internet weight loss program. Journal of Medical Internet Research 12(1), e9 (2010)Google Scholar
  15. 15.
    Couper, M.P., Alexander, G.L., Zhang, N.H., Little, R.J.A., Maddy, N., Nowak, M.A., McClure, J.B., Calvi, J.J., Rolnick, S.J., Stopponi, M.A., Johnson, C.C.: Engagement and Retention: Measuring Breadth and Depth of Participant Use of an Online Intervention. Journal of Medical Internet Research 12(4), 41–55 (2010)CrossRefGoogle Scholar
  16. 16.
    Davies, C., Corry, K., Van Itallie, A., Vandelanotte, C., Caperchione, C., Mummery, W.K.: Prospective associations between intervention components and website engagement in a publicly available physical activity website: the case of 10,000 Steps Australia. Journal of Medical Internet Research 14(1), e4 (2012)Google Scholar
  17. 17.
    Linke, S., Murray, E., Butler, C., Wallace, P.: Internet-based interactive health intervention for the promotion of sensible drinking: patterns of use and potential impact on members of the general public. Journal of Medical Internet Research 9(2), e10 (2007)Google Scholar
  18. 18.
    Zbikowski, S.M., Hapgood, J., Smucker Barnwell, S., McAfee, T.: Phone and web-based tobacco cessation treatment: real-world utilization patterns and outcomes for 11,000 tobacco users. Journal of Medical Internet Research 10(5), e41 (2008)Google Scholar
  19. 19.
    Krukowski, R.A., Harvey-Berino, J., Ashikaga, T., Thomas, C.S., Micco, N.: Internet-Based Weight Control: The Relationship Between Web Features and Weight Loss. Telemed. J. E-Health 14(8), 775–782 (2008)CrossRefGoogle Scholar
  20. 20.
    Hayes, S.C., Strosahl, K., Wilson, K.G.: Acceptance and Commitment Therapy: An experiential approach to behavior change. Guilford Press, New York (1999)Google Scholar
  21. 21.
    Kabat-Zinn, J.: Full catastrophe living: using the wisdom of your body and mind to face stress, pain, and illness. Delacorte Press, New York (1990)Google Scholar
  22. 22.
    Kabat-Zinn, J.: Wherever you go, there you are: Mindfulness meditation in everyday life. Hyperion, New York (1994)Google Scholar
  23. 23.
    Bohlmeijer, E.T., Hulsbergen, M.: Voluit Leven. Mindfulness of de kunst van het ervaren, nu als praktisch hulpboek [Living to the full. Mindfulness or the art of acceptance, now as a practical help book]. Boom, Amsterdam (2008)Google Scholar
  24. 24.
    Bohlmeijer, E.T., Fledderus, M., Rokx, T.A., Pieterse, M.E.: Efficacy of an early intervention based on acceptance and commitment therapy for adults with depressive symptomatology: Evaluation in a randomized controlled trial. Behav. Res. Ther. 49(1), 62–67 (2011)CrossRefGoogle Scholar
  25. 25.
    Fledderus, M., Bohlmeijer, E.T., Pieterse, M.E., Schreurs, K.M.: Acceptance and commitment therapy as guided self-help for psychological distress and positive mental health: a randomized controlled trial. Psychol. Med., 1–11 (2011)Google Scholar
  26. 26.
    Fledderus, M., Bohlmeijer, E.T., Smit, F., Westerhof, G.J.: Mental health promotion as a new goal in public mental health care: a randomized controlled trial of an intervention enhancing psychological flexibility. Am. J. Public Health 100(12), 2372 (2010)CrossRefGoogle Scholar
  27. 27.
    Postel, M.G., de Haan, H.A., ter Huurne, E.D., van der Palen, J., Becker, E.S., de Jong, C.A.J.: Attrition in Web-Based Treatment for Problem Drinkers. J. Med. Internet Res. 13(4), e117 (2011)Google Scholar
  28. 28.
    Eysenbach, G.: The Law of Attrition. J. Med. Internet Res. 7(1), e11 (2005)Google Scholar
  29. 29.
    Crumlish, C., Malone, E.: Designing social interfaces, 1st edn. O’Reilly Media, Beijing (2009)Google Scholar
  30. 30.
    Kaptein, M., Eckles, D.: Selecting Effective Means to Any End: Futures and Ethics of Persuasion Profiling. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 82–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Oinas-Kukkonen, H., Harjumaa, M.: Persuasive Systems Design: Key Issues, Process Model, and System Features. Communications of the Association for Information Systems 24, 485 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Saskia M. Kelders
    • 1
  • Julia E. W. C. (Lisette) van Gemert-Pijnen
    • 1
  1. 1.Department of Health, Psychology and TechnologyUniversity of TwenteNetherlands

Personalised recommendations