Skip to main content

Finite Differences

  • Chapter
Financial Modeling

Part of the book series: Springer Finance ((SFTEXT))

  • 4628 Accesses

Abstract

This book emphasizes the use of backward stochastic differential equations (BSDEs) for financial modeling. The BSDE perspective is useful for various reasons. This said, in Markov setups, BSDEs are nothing than the stochastic counterparts of the more familiar, deterministic, partial differential equations (PDEs, or PIDEs for partial integro-differential equations if there are jumps), for representing prices and Greeks of financial derivatives (have you already heard of the Black–Scholes equation?). This means that prices and Greeks can also be computed by good old deterministic numerical schemes for the corresponding P(I)DEs, such as finite differences (for pricing problems which are typically posed on rectangular domains, the additional complexity of using potentially more powerful finite element methods is often not justified). Like tree methods and as opposed to simulation methods, finite difference methods can easily cope with early exercise features, and in low dimension they can give an accurate and robust computation of an option price and Greeks (delta, gamma, and theta at time 0). However, they are not practical for dimension greater than three or four, for then too many grid points are required for achieving satisfactory accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [124] for a PDE version of the Girsanov transformation.

  2. 2.

    Recalling that the pricing equations are posed in backward time, with a terminal condition at time T.

  3. 3.

    See Sect. 8.2.1.2 for the notions of stability and consistency.

  4. 4.

    See the equation (5.71).

  5. 5.

    However, the sparseness of the corresponding matrix may be exploited in an iterative solution.

  6. 6.

    Adequately adjusting the pricing formula (4.62) for the dividends of S; see the related comment in Sect. 4.3.1.

References

  1. Achdou, Y., & Pironneau, O. (2005). Computational methods for option pricing. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  2. Alvarez, O., & Tourin, A. (1996). Viscosity solutions of nonlinear integro-differential equations. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire, 13(3), 293–317.

    MathSciNet  MATH  Google Scholar 

  3. Amadori, A. L. (2003). Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential and Integral Equations, 16(7), 787–811.

    MathSciNet  MATH  Google Scholar 

  4. Amadori, A. L. (2007). The obstacle problem for nonlinear integro-differential operators arising in option pricing. Ricerche Di Matematica, 56(1), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  5. Avellaneda, M., Levy, A., & Paras, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance, 2(2), 73–88.

    Article  Google Scholar 

  6. Bally, V., Caballero, E., Fernandez, B., & El-Karoui, N. (2002). Reflected BSDE’s PDE’s and variational inequalities (INRIA Technical Report No. 4455).

    Google Scholar 

  7. Bally, V., & Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly stochastic differential equations. Journal of Theoretical Probability, 14(1), 125–164.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83.

    Article  MathSciNet  MATH  Google Scholar 

  9. Barles, G., & Lesigne, L. (1997). SDE, BSDE and PDE. In N. El Karoui & L. Mazliak (Eds.), Pitman research notes in mathematics series: Vol. 364. Backward stochastic differential equations (pp. 47–80).

    Google Scholar 

  10. Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4, 271–283.

    MathSciNet  MATH  Google Scholar 

  11. Cont, R., & Fournié, D. (2012). Functional Itô calculus and stochastic integral representation of martingales. Annals of Probability, 41(1), 109–133.

    Article  Google Scholar 

  12. Cont, R., & Voltchkova, K. (2005). A finite difference methods for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626.

    Article  MathSciNet  MATH  Google Scholar 

  13. Crandall, M., Ishii, H., & Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27, 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  14. Crépey, S. (2001). Contribution à des méthodes numériques appliquées à la finance et aux jeux différentiels. PhD Thesis, Ecole Polytechnique/INRIA Sophia Antipolis.

    Google Scholar 

  15. Demeterfi, K., Derman, E., Kamal, M., & Zou, J. (1999). A guide to volatility and variance swaps. The Journal of Derivatives, 6(4), 9–32.

    Article  Google Scholar 

  16. D’Halluin, Y., Forsyth, P. A., & Vetzal, K. R. (2005). Robust numerical methods for contingent claims under jump-diffusion processes. IMA Journal of Numerical Analysis, 25, 87–112.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubois, F., & Lelievre, T. (2005). Efficient pricing of Asian options by the PDE approach. Journal of Computational Finance, 8(2), 55–64.

    Google Scholar 

  18. Duffy, D. (2006). Financial difference methods in financial engineering. Chichester: Wiley.

    MATH  Google Scholar 

  19. Ern, A., Villeneuve, S., & Zanette, A. (2004). Adaptive finite element methods for local volatility European option pricing. International Journal of Theoretical and Applied Finance, 7(6), 659–684.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fleming, W., & Soner, H. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  21. Fournié, E., Lasry, J.-M., Lebuchoux, J., & Lions, P.-L. (2001). Applications of Malliavin calculus to Monte Carlo methods in finance. II. Finance and Stochastics, 5, 201–236.

    Article  MathSciNet  MATH  Google Scholar 

  22. Friedman, A. (1964). Partial differential equations of parabolic type. New York: Prentice Hall.

    MATH  Google Scholar 

  23. Hout, K. J., & Welfert, B. D. (2007). Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms. Applied Numerical Mathematics, 57, 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaillet, P., Lamberton, D., & Lapeyre, B. (1990). Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae, 21, 263–289.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jakobsen, E. R., & Karlsen, K. H. (2005). Continuous dependence estimates for viscosity solutions of integro-PDEs. Journal of Differential Equations, 212(2), 278–318.

    Article  MathSciNet  MATH  Google Scholar 

  26. Jakobsen, E. R., & Karlsen, K. H. (2006). A “maximum principle for semi-continuous functions” applicable to integro-partial differential equations. Nonlinear Differential Equations and Applications, 13, 137–165.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lamberton, D., & Lapeyre, B. (1996). Introduction to stochastic calculus applied to finance. London: Chapman & Hall.

    Google Scholar 

  28. Lipton, A. (1999). Similarities via self-similarities. Risk, September 1999, 101–105.

    Google Scholar 

  29. Matache, A.-M., Von Petersdorff, T., & Schwab, C. (2004). Fast deterministic pricing of options on Lévy driven assets. Mathematical Modelling and Analysis, 38(1), 37–72.

    Article  MathSciNet  MATH  Google Scholar 

  30. Morton, K., & Mayers, D. (1994). Numerical solution of partial differential equations. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  31. Peaceman, D., & Rachford, H. (1955). The numerical solution of parabolic and elliptic differential equations. SIAM Journal on Applied Mathematics, 3, 28–42.

    Article  MathSciNet  MATH  Google Scholar 

  32. Reisinger, C. (2012). Analysis of linear difference schemes in the sparse grid combination technique. IMA Journal of Numerical Analysis, first published online September 5, 2012.

    Google Scholar 

  33. Rogers, L., & Shi, Z. (1995). The value of an Asian option. Journal of Applied Probability, 32(4), 1077–1088.

    Article  MathSciNet  MATH  Google Scholar 

  34. Saad, Y., & Schultz, M. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear system. SIAM Journal on Scientific Computing, 7, 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  35. Tavella, D., & Randall, C. (2000). Financial instruments: the finite difference method. New York: Wiley.

    Google Scholar 

  36. Villeneuve, S., & Zanette, A. (2002). Parabolic ADI methods for pricing American option on two stocks. Mathematics of Operations Research, 27(1), 121–149.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wilmott, P. (1998). Derivatives: the theory and practice of financial engineering. New York: Wiley.

    Google Scholar 

  38. Wilmott, P. (2002). Cliquet options and volatility models. Wilmott, December 2002, 78–83.

    Article  Google Scholar 

  39. Wilmott, P., Dewynne, J., & Howison, S. (1993). Option pricing. Oxford: Oxford Financial Press.

    Google Scholar 

  40. Windcliff, H., Forsyth, P., & Vetzal, K. (2006). Numerical methods for valuing cliquet options. Applied Mathematical Finance, 13, 353–386.

    Article  MATH  Google Scholar 

  41. Windcliff, H., Forsyth, P., & Vetzal, K. (2006). Pricing methods and hedging strategies for volatility derivatives. Journal of Banking & Finance, 30, 409–431.

    Article  Google Scholar 

  42. Zhu, Y., Wu, X., & Chern, I. (2004). Derivative securities and difference methods. Berlin: Springer.

    Book  MATH  Google Scholar 

  43. Zvan, R., Forsyth, P. A., & Vetzal, K. R. (1998). Robust numerical methods for PDE models of Asian option. Journal of Computational Finance, 1(2), 39–78.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crépey, S. (2013). Finite Differences. In: Financial Modeling. Springer Finance(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37113-4_8

Download citation

Publish with us

Policies and ethics