Skip to main content

Monte Carlo Methods

  • Chapter
Financial Modeling

Part of the book series: Springer Finance ((SFTEXT))

Abstract

The term “Monte Carlo” for computational methods involving simulated random numbers was invented by Metropolis and Ulam when they were working at the Las Alamos Laboratory (didn’t some people say that quants were rocket scientists?). Like deterministic pricing schemes, simulation pricing schemes can be used in any Markovian (or, of course, static one-period) setup. In the case of European claims, simulation pricing schemes reduce to the well known Monte Carlo loops. For products with early exercise features, or for more general control problems and the related BSDEs, numerical schemes by simulation are available too, yet these are more sophisticated and will be dealt with separately in Chaps. 10 and 11.

Monte Carlo methods are attractive by their genericity: genericity of their theoretical properties (such as the confidence interval they provide for the solution, at least for genuine pseudo Monte Carlo methods, as opposed to the quasi Monte Carlo methods also reviewed in this chapter); and also genericity of implementation. But (pseudo) Monte Carlo methods are slow, only converging at the rate \(\sigma/ \sqrt{m} \), where m is the number of simulation runs and σ is the standard deviation of the sampled payoff. So ultimately with Monte Carlo it’s all about how to make it faster. To accelerate the convergence, various variance reduction techniques (e.g. control variate and importance sampling) can be used to transform a given payoff into another one with less variance. An alternative to variance reduction is quasi Monte Carlo, which converges faster in practice than pseudo Monte Carlo (but beware of the dimension; moreover quasi Monte Carlo estimates do not come with confidence intervals). A last “acceleration” technique is of course to resort to a parallel implementation, which with Monte Carlo is an easy thing to do, but unfortunately parallelization techniques are not dealt with in this book!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, this is less important in finance than for other applications such as cryptography.

  2. 2.

    Eigenfactors of Γ, columns of P.

  3. 3.

    See Sects. 3.4 and 4.3.1.1.

  4. 4.

    See Sect. 8.2.1.2.

References

  1. Andersen, L., & Brotherton-Ratcliffe, R. (1996). Exact exotics. Risk, October 1996, 85–89.

    Google Scholar 

  2. Bally, V., & Pagès, G. (2003). A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli, 9(6), 1003–1049.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bally, V., Pagès, G., & Printems, J. (2001). A stochastic quantization method for nonlinear problems. Monte Carlo and probabilistic methods for partial differential equations. Monte Carlo Methods and Applications, 7(1–2), 21–33.

    MathSciNet  MATH  Google Scholar 

  4. Bouchard, B., Ekeland, I., & Touzi, N. (2004). On the Malliavin approach to Monte Carlo approximations of conditional expectations. Finance and Stochastics, 8, 45–71.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchard, B., & Warin, X. (2010). Monte Carlo valuation of American options: new algorithm to improve on existing methods. In R. Carmona, P. Del Moral, P. Hu, & N. Oudjane (Eds.) Numerical methods in finance (Chapter 7). Berlin: Springer.

    Google Scholar 

  6. Broadie, M., & Glasserman, P. (1996). Estimating security price derivatives using simulation. Management Science, 42(2), 269–285.

    Article  MATH  Google Scholar 

  7. Cont, R., & Tankov, P. (2003). Financial modelling with jump processes. London: Chapman & Hall.

    Book  Google Scholar 

  8. Delong, L. (2013). Backward stochastic differential equations with jumps and their actuarial and financial applications. Springer (forthcoming in the EAA Series).

    Google Scholar 

  9. Fournié, E., Lasry, J.-M., Lebuchoux, J., & Lions, P.-L. (2001). Applications of Malliavin calculus to Monte Carlo methods in finance. II. Finance and Stochastics, 5, 201–236.

    Article  MathSciNet  MATH  Google Scholar 

  10. Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L., & Touzi, N. (1999). An application of Malliavin calculus to Monte Carlo methods in finance. Finance and Stochastics, 3, 391–412.

    Article  MathSciNet  MATH  Google Scholar 

  11. Giles, M., & Glasserman, P. (2006). Smoking adjoints: Fast Monte Carlo Greeks. Risk, January 2006, 88–92.

    Google Scholar 

  12. Glasserman, P. (2004). Monte Carlo methods in financial engineering. Berlin: Springer.

    MATH  Google Scholar 

  13. Guyon, J., & Henry-Labordère, P. (2012). Nonlinear pricing methods in quantitative finance. London: Chapman & Hall.

    Google Scholar 

  14. Györfi, L., Kohler, M., Krzyzak, A., & Walk, H. (2002). A distribution-free theory of nonparametric regression. New York: Springer.

    Book  MATH  Google Scholar 

  15. Karatzas, I., & Shreve, S. (1988). Brownian motion and stochastic calculus. New York: Springer.

    Book  MATH  Google Scholar 

  16. Kemna, G. Z., & Vorst, A. C. (1990). A pricing method for options based on average asset values. Journal of Banking & Finance, 14(1), 113–129.

    Article  Google Scholar 

  17. Lapeyre, B., Pardoux, E., & Sentis, R. (2003). Introduction to Monte-Carlo methods for transport and diffusion equations. London: Oxford University Press.

    MATH  Google Scholar 

  18. Lapeyre, B., & Temam, E. (2001). Competitive Monte Carlo methods for the pricing of Asian options. Journal of Computational Finance, 5(1), 39–57.

    Google Scholar 

  19. L’Ecuyer, P. (1994). Uniform random number generation. Annals of Operations Research, 53, 77–120.

    Article  MathSciNet  MATH  Google Scholar 

  20. L’Ecuyer, P. (1998). Random number generation. In J. Banks (Ed.), The handbook of simulation (Chapter 4, pp. 93–137). New York: Wiley.

    Chapter  Google Scholar 

  21. Lions, P.-L., & Régnier, H. (2001). Calcul du prix et des sensibilités d’une option américaine par une méthode de Monte Carlo (working paper).

    Google Scholar 

  22. Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulations: a simple least-squares approach. The Review of Financial Studies, 14(1), 113–147.

    Article  Google Scholar 

  23. Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44, 335–341.

    Article  MathSciNet  MATH  Google Scholar 

  24. Morokoff, W., & Caflish, R. (1994). Quasi-random sequences and their discrepancies. SIAM Journal on Scientific Computing, 5(6), 1251–1279.

    Article  Google Scholar 

  25. Niederreiter, H. (1987). Points sets ans sequences with small discrepancy. Monatshefte für Mathematik, 104, 273–337.

    Article  MathSciNet  MATH  Google Scholar 

  26. Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  27. Platen, E., & Bruti-Liberati, N. (2010). Numerical solution of stochastic differential equations with jumps in finance. Berlin: Springer.

    Book  MATH  Google Scholar 

  28. Revuz, D., & Yor, M. (2001). Continuous martingales and Brownian motion (3rd ed.). Berlin: Springer.

    Google Scholar 

  29. Rogers, L. (2002). Monte Carlo valuation of American options. Mathematical Finance, 12, 271–286.

    Article  MathSciNet  MATH  Google Scholar 

  30. Sobol, I. M. (1976). The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Computational Mathematics and Mathematical Physics, 16, 236–242.

    Article  MathSciNet  Google Scholar 

  31. Tsitsiklis, J. N., & Van Roy, B. (2001). Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks, 12, 694–703.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crépey, S. (2013). Monte Carlo Methods. In: Financial Modeling. Springer Finance(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37113-4_6

Download citation

Publish with us

Policies and ethics