Skip to main content

Martingale Modeling

  • Chapter
Financial Modeling

Part of the book series: Springer Finance ((SFTEXT))

  • 4683 Accesses

Abstract

In this chapter, we show how the task of pricing and hedging financial derivatives can be reduced to that of solving related backward stochastic differential equations, called stochastic pricing equations in this book, equivalent to the deterministic pricing equations that arise in Markovian setups. The deterministic pricing equations, starting with the celebrated Black–Scholes equation, are better known to practitioners. However, these deterministic partial-differential equations, also including integral terms in models with jumps, are more “model dependent” than the stochastic pricing equations. Moreover, the deterministic pricing equations are less general since they are only available in Markovian setups. In addition, the mathematics of pricing and hedging financial derivatives is simpler in terms of the stochastic pricing equations. Indeed, rigorous demonstrations based on the deterministic pricing equations involve technical notions of viscosity or Sobolev solutions (at least as soon as the problem is nonlinear, e.g. when early exercise clauses and related obstacles in the deterministic equations come into the picture).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As soon as early exercise clauses and related obstacles in the deterministic equations come into the picture.

  2. 2.

    This classical assumption is, of course, seriously challenged and, in fact, unrealistic since the crisis; see Remark 4.1.1.

  3. 3.

    Typically nonnegative, but not necessarily so, as seen with the Swiss currency during the 2011 Euro sovereign debt crisis.

  4. 4.

    Default-free and without call protection and so, in particular, ϑ≡0.

  5. 5.

    With priority of a put over a call here, though this is immaterial in terms of pricing and hedging.

  6. 6.

    Equation (4.11) being here assumed to yield a well-defined semimartingale.

  7. 7.

    For an appropriately chosen call time θ ; see Proposition 4.1.15 below for a precise statement.

  8. 8.

    Starting from 0 by definition; see Sect. 3.1.5.

  9. 9.

    Not necessarily continuous.

  10. 10.

    Special semimartingale with additional integrability properties; see Sect. 12.1.2.2.

  11. 11.

    See Definition 12.2.4 for formal statements.

  12. 12.

    At least in principle, leaving alone the computational issues; these will be dealt with in Chap. 9.

  13. 13.

    Or , upon exercise at a stopping time ν, for American or game claims.

  14. 14.

    See Example 12.4.6 for a precise statement.

  15. 15.

    Otherwise a more general but less constructive representation for M t can be given in terms of Malliavin calculus.

  16. 16.

    See Sect. 2.2.

  17. 17.

    See Sect. 6.9.3 for an example of the dividend-adjustment which is otherwise required in the equations.

  18. 18.

    In which β now refers to the discount factor associated with an arbitrary numéraire B.

  19. 19.

    Otherwise a more general but less constructive representation for m t can be given in terms of Malliavin calculus.

  20. 20.

    Or upon exercise at a stopping time ν, in the cases of American or game claims.

  21. 21.

    See Sect. 14.1 for the case of discrete coupons.

  22. 22.

    Since the 2011 Euro sovereign debt crisis, defaultability is also a feature of many Euro government bonds.

  23. 23.

    Otherwise a more general but less constructive representation for \(\widetilde{M}_{t}\) can be given in terms of Malliavin calculus.

  24. 24.

    Boolean-valued processes.

  25. 25.

    Model calibration will be the topic of Chap. 9.

References

  1. Assefa, S., Bielecki, T., Crépey, S., & Jeanblanc, M. (2011). CVA computation for counterparty risk assessment in credit portfolios. In T. Bielecki, D. Brigo, & F. Patras (Eds.), Credit risk frontiers (pp. 397–436). New York: Wiley.

    Google Scholar 

  2. Bachelier, L. (1900). Théorie de la spéculation. Annales Scientifiques de L’École Normale Supérieure, 17, 21–86.

    MathSciNet  MATH  Google Scholar 

  3. Bielecki, T., Brigo, D., & Crépey, S. (2013). Counterparty risk modeling—collateralization, funding and hedging. Taylor & Francis (in preparation).

    Google Scholar 

  4. Bielecki, T. R., Cousin, A., Crépey, S., & Herbertsson, A. (2012). Dynamic hedging of portfolio credit risk in a Markov copula model. Journal of Optimization Theory and Applications (doi:10.1007/s10957-013-0318-4, forthcoming).

  5. Bielecki, T., & Crépey, S. (2011). Dynamic hedging of counterparty exposure. In T. Zariphopoulou, M. Rutkowski, & Y. Kabanov (Eds.), The Musiela Festschrift. Berlin: Springer (forthcoming).

    Google Scholar 

  6. Bielecki, T. R., Crépey, S., & Jeanblanc, M. (2010). Up and down credit risk. Quantitative Finance, 10(10), 1137–1151.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2007). Valuation of basket credit derivatives in the credit migrations environment. In J. Birge & V. Linetsky (Eds.), Handbook of financial engineering. Amsterdam: Elsevier.

    Google Scholar 

  8. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2008). Defaultable options in a Markovian intensity model of credit risk. Mathematical Finance, 18, 493–518 (updated version on www.defaultrisk.com).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2009). Valuation and hedging of defaultable game options in a hazard process model. Journal of Applied Mathematics and Stochastic Analysis. Article ID 695798 (long preprint version on www.defaultrisk.com).

  10. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2010). Arbitrage pricing of defaultable game options with applications to convertible bonds. Quantitative Finance, 8(8), 795–810.

    Article  Google Scholar 

  11. Bielecki, T. R., Crépey, S., Jeanblanc, M., & Rutkowski, M. (2011). Convertible bonds in a defaultable diffusion model. In A. Kohatsu-Higa, N. Privault, & S. Sheu (Eds.), Stochastic analysis with financial applications (pp. 255–298). Basel: Birkhäuser.

    Chapter  Google Scholar 

  12. Bielecki, T. R., Jeanblanc, M., & Rutkowski, M. (2009). CSFI lecture notes series: Vol. 2. Credit risk modeling. Osaka University: Osaka University Press.

    Google Scholar 

  13. Bielecki, T. R., & Rutkowski, M. (2002). Credit risk: modeling, valuation and hedging. Berlin: Springer.

    Google Scholar 

  14. Bielecki, T. R., Vidozzi, A., & Vidozzi, L. (2008). A Markov copulae approach to pricing and hedging of credit index derivatives and ratings triggered step-up bonds. The Journal of Credit Risk, 4(1), 47–76.

    Google Scholar 

  15. Bismut, J. (1973). Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications, 44, 384–404.

    Article  MathSciNet  Google Scholar 

  16. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 635–654.

    Article  Google Scholar 

  17. Brigo, D., & Mercurio, F. (2006). Interest rate models—theory and practice. With smile, inflation and credit (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  18. Carmona, R., & Crépey, S. (2010). Importance sampling and interacting particle systems for the estimation of Markovian credit portfolios loss distribution. International Journal of Theoretical and Applied Finance, 13(4), 577–602.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cesari, G., Aquilina, J., Charpillon, N., Filipovic, Z., Lee, G., & Manda, I. (2010). Modelling, pricing, and hedging counterparty credit exposure. Berlin: Springer.

    Google Scholar 

  20. Cherny, A., & Shiryaev, A. (2002). Vector stochastic integrals and the fundamental theorems of asset pricing. Proceedings of the Steklov Institute of Mathematics, 237, 6–49.

    MathSciNet  Google Scholar 

  21. Coculescu, D., & Nikeghbali, A. (2012). Hazard processes and martingale hazard processes. Mathematical Finance, 22(3), 519–537.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cont, R., & Minca, A. (2011). Recovering portfolio default intensities implied by CDO quotes. Mathematical Finance, online first 22 June 2011.

    Google Scholar 

  23. Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part I: Pricing. Mathematical Finance (online December 2012, doi:10.1111/mafi.12004).

  24. Crépey, S. (2013). Bilateral counterparty risk under funding constraints—Part II: CVA. Mathematical Finance (online December 2012, doi:10.1111/mafi.12005).

  25. Crépey, S., Jeanblanc, M., & Zargari, B. (2010). Counterparty risk on a CDS in a Markov chain copula model with joint defaults. In M. Kijima, C. Hara, Y. Muromachi, & K. Tanaka (Eds.), Recent advances in financial engineering 2009 (pp. 91–126). Singapore: World Scientific.

    Google Scholar 

  26. Delbaen, F., & Schachermayer, W. (1997). The fundamental theorem of asset pricing for unbounded stochastic processes. Mathematische Annalen, 312, 215–250.

    Article  MathSciNet  Google Scholar 

  27. Delbaen, F., & Schachermayer, W. (2005). The mathematics of arbitrage. Berlin: Springer.

    Google Scholar 

  28. Dellacherie, C., & Meyer, P.-A. (1982). Probabilities and potential. Amsterdam: North-Holland.

    MATH  Google Scholar 

  29. De Spiegeleer, J., Schoutens, W., & Jabre, P. (2011). The handbook of convertible bonds: pricing, strategies and risk management. Chichester: Wiley.

    Google Scholar 

  30. El Karoui, N., Kapoudjian, E., Pardoux, C., Peng, S., & Quenez, M.-C. (1997). Reflected solutions of backward SDEs, and related obstacle problems for PDEs. Annals of Probability, 25, 702–737.

    Article  MathSciNet  MATH  Google Scholar 

  31. El Karoui, N., Peng, S., & Quenez, M.-C. (1997). Backward stochastic differential equations in finance. Mathematical Finance, 7, 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  32. El Karoui, N., & Quenez, M.-C. (1997). Nonlinear pricing theory and backward stochastic differential equations. In W. Runggaldier (Ed.), Lecture notes in mathematics: Vol. 1656. Financial mathematics, Bressanone, 1996 (pp. 191–246). Berlin: Springer.

    Chapter  Google Scholar 

  33. Föllmer, H., & Sondermann, D. (1986). Hedging of non-redundant contingent claims. In A. Mas-Colell & W. Hildenbrand (Eds.), Contributions to mathematical economics (pp. 205–223). Amsterdam: North-Holland.

    Google Scholar 

  34. Frey, R., & Backhaus, J. (2008). Pricing and hedging of portfolio credit derivatives with interacting default intensities. International Journal of Theoretical and Applied Finance, 11(6), 611–634.

    Article  MathSciNet  MATH  Google Scholar 

  35. Hamadène, S. (2006). Mixed zero-sum differential game and American game options. SIAM Journal on Control and Optimization, 45(2), 496–518.

    Article  MathSciNet  Google Scholar 

  36. Harrison, J. M., & Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and Their Applications, 11(3), 215–260.

    Article  MathSciNet  MATH  Google Scholar 

  37. Herbertsson, A., & Rootzén, H. (2008). Pricing kth-to-default swaps under default contagion: the matrix-analytic approach. Journal of Computational Finance, 12(1), 49–78.

    MathSciNet  Google Scholar 

  38. Jarrow, R. A., & Turnbull, S. (1995). Pricing derivatives on financial securities subject to credit risk. Journal of Finance, 50(1), 53–85.

    Article  Google Scholar 

  39. Kallsen, J., & Kühn, C. (2005). Convertible bonds: financial derivatives of game type. In A. Kyprianou, W. Schoutens, & P. Wilmott (Eds.), Exotic option pricing and advanced Lévy models (pp. 277–288). Chichester: Wiley.

    Google Scholar 

  40. Karatzas, I. (1988). On the pricing of American options. Applied Mathematics & Optimization, 17, 37–60.

    Article  MathSciNet  MATH  Google Scholar 

  41. Kifer, Y. (2000). Game options. Finance and Stochastics, 4, 443–463.

    Article  MathSciNet  MATH  Google Scholar 

  42. Kusuoka, S. (1999). A remark on default risk models. Advances in Mathematical Economics, 1, 69–82.

    Article  MathSciNet  Google Scholar 

  43. Lando, D. (1994). Three essays on contingent claims pricing. PhD Thesis, Cornell University.

    Google Scholar 

  44. Laurent, J.-P., Cousin, A., & Fermanian, J.-D. (2011). Hedging default risks of CDOs in Markovian contagion models. Quantitative Finance, 11(12), 1773–1791.

    Article  MathSciNet  Google Scholar 

  45. Lepeltier, J.-P., & Maingueneau, M. (1984). Le jeu de Dynkin en théorie générale sans l’hypothèse de Mokobodski. Stochastics, 13, 25–44.

    Article  MathSciNet  MATH  Google Scholar 

  46. Lipton, A. (2001). Mathematical methods for foreign exchange—a financial engineer’s approach. Singapore: World Scientific.

    MATH  Google Scholar 

  47. Ma, J., & Cvitanić, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. Journal of Applied Mathematics and Stochastic Analysis, 14(2), 113–138.

    Article  MathSciNet  MATH  Google Scholar 

  48. Nikeghbali, A., & Yor, M. (2005). A definition and some characteristic properties of pseudo-stopping times. Annals of Probability, 33, 1804–1824.

    Article  MathSciNet  MATH  Google Scholar 

  49. Pallavicini, A., Perini, D., & Brigo, D. (2011). Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation (working paper).

    Google Scholar 

  50. Pardoux, E., & Peng, S. (1990). Adapted solution of a backward stochastic differential equation. Systems & Control Letters, 14, 55–61.

    Article  MathSciNet  MATH  Google Scholar 

  51. Protter, P. E. (2001). A partial introduction to financial asset pricing theory. Stochastic Processes and Their Applications, 91(2), 169–203.

    Article  MathSciNet  MATH  Google Scholar 

  52. Protter, P. E. (2004). Stochastic integration and differential equations (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  53. Schoutens, W. (2012). In The handbook of hybrid securities: strategies, pricing and risk management. Wiley (e-book).

    Google Scholar 

  54. Schweizer, M. (1991). Option hedging for semimartingales. Stochastic Processes and Their Applications, 37, 339–363.

    Article  MathSciNet  MATH  Google Scholar 

  55. Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In E. Jouini, J. Cvitanic, & M. Musiela (Eds.), Option pricing, interest rates and risk management (pp. 538–574). Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crépey, S. (2013). Martingale Modeling. In: Financial Modeling. Springer Finance(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37113-4_4

Download citation

Publish with us

Policies and ethics