Skip to main content

Analytic Approach

  • Chapter
Financial Modeling

Part of the book series: Springer Finance ((SFTEXT))

Abstract

In this chapter we derive the companion variational inequality approach to the reflected BSDEs of Chap. 12. First we introduce systems of partial integro-differential variational inequalities associated with these BSDEs and we state suitable definitions of viscosity solutions for related problems. Remember that BSDEs are used to model nonlinear phenomena, meaning that the equivalent PDEs (or systems of them, or PIDEs) are nonlinear too. They therefore don’t have classical solutions, but only solutions in weaker senses, viscosity solutions being the notion of choice for the kind of nonlinearities we face in pricing (or more general control) problems, which at least have some kind of comparison property (recall the sub- versus super-martingale story sketched in the discussion of Chap. 2).

We then deal with the corresponding existence, uniqueness and stability issues. The value processes (first components) in the solutions of the BSDEs is characterized in terms of the value functions for related optimal stopping or Dynkin game problems. We then establish a discontinuous viscosity solutions comparison (again) principle, which is the deterministic counterpart of the BSDEs comparison theorem alluded to above. In particular, this comparison principle implies uniqueness of viscosity solutions for the related obstacle problems. The comparison principle is also used for proving the convergence of stable, monotone and consistent deterministic approximation schemes. The notion of viscosity solutions is nice because everything happens as if it wasn’t there: all the classical results which apply to linear problems can be extended to nonlinear problems endowed with a comparison property, provided one switches to the notion of viscosity solutions for these problems. But the underlying mathematics are nontrivial, which is why we need Chap. 13!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the sense that, for every iI, \(\overline{\mathcal{O}}\cap ({\mathbb{R}}^{d}\times\{i\}) \) is the closure of \({\mathcal{O}}\cap({\mathbb{R}}^{d}\times\{ i\})\), identified with a subset of \({\mathbb{R}}^{d}\).

  2. 2.

    Under the assumption (M).

  3. 3.

    Modulus of continuity of g.

  4. 4.

    (A) suggests “approximation”, for which this extended monotonicity of g is intended.

References

  1. Alvarez, O., & Tourin, A. (1996). Viscosity solutions of nonlinear integro-differential equations. Annales de l’Institut Henri Poincaré (C) Analyse non linéaire, 13(3), 293–317.

    MathSciNet  MATH  Google Scholar 

  2. Amadori, A. L. (2003). Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential and Integral Equations, 16(7), 787–811.

    MathSciNet  MATH  Google Scholar 

  3. Amadori, A. L. (2007). The obstacle problem for nonlinear integro-differential operators arising in option pricing. Ricerche Di Matematica, 56(1), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bally, V., Caballero, E., Fernandez, B., & El-Karoui, N. (2002). Reflected BSDE’s PDE’s and variational inequalities (INRIA Technical Report No. 4455).

    Google Scholar 

  5. Bally, V., & Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly stochastic differential equations. Journal of Theoretical Probability, 14(1), 125–164.

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles, G., Buckdahn, R., & Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics & Stochastics Reports, 60, 57–83.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barles, G., & Imbert, C. (2008). Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Annales de L’IHP, 25(3), 567–585.

    MathSciNet  MATH  Google Scholar 

  8. Barles, G., & Lesigne, L. (1997). SDE, BSDE and PDE. In N. El Karoui & L. Mazliak (Eds.), Pitman research notes in mathematics series: Vol. 364. Backward stochastic differential equations (pp. 47–80).

    Google Scholar 

  9. Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4, 271–283.

    MathSciNet  MATH  Google Scholar 

  10. Bensoussan, A., & Lions, J.-L. (1982). Applications of variational inequalities in stochastic control. Amsterdam: North-Holland.

    MATH  Google Scholar 

  11. Bensoussan, A., & Lions, J.-L. (1984). Impulse control and quasi-variational inequalities. Paris: Gauthier-Villars.

    Google Scholar 

  12. Briani, M., La Chioma, C., & Natalini, R. (2004). Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numerische Mathematik, 98(4), 607–646.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cont, R., & Voltchkova, K. (2005). A finite difference methods for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626.

    Article  MathSciNet  MATH  Google Scholar 

  14. Crandall, M., Ishii, H., & Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27, 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fleming, W., & Soner, H. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  16. Ishii, H., & Koike, S. (1991). Viscosity solutions for monotone systems of second-order elliptic PDEs. Communications in Partial Differential Equations, 16(6–7), 1095–1128.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jakobsen, E. R., Karlsen, K. H., & La Chioma, C. (2008). Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numerische Mathematik, 110(2), 221–255.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, J., & Cvitanić, J. (2001). Reflected forward–backward SDEs and obstacle problems with boundary conditions. Journal of Applied Mathematics and Stochastic Analysis, 14(2), 113–138.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pardoux, E., Pradeilles, F., & Rao, Z. (1997). Probabilistic interpretation of systems of semilinear PDEs. Annales de l’Institut Henri Poincaré, série Probabilités–Statistiques, 33, 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  20. Pham, H. (1998). Optimal stopping of controlled jump-diffusion processes: a viscosity solution approach. Journal of Mathematical Systems Estimation and Control, 8, 1–27.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crépey, S. (2013). Analytic Approach. In: Financial Modeling. Springer Finance(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37113-4_13

Download citation

Publish with us

Policies and ethics