Skip to main content

The Optimization Algorithm of Torque Compensation for PMSM Systems with Periodic-Nonlinear Load

  • Conference paper
  • 3186 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 355))

Abstract

Non-linear variations of load torque cycles in the low frequency operation of interior permanent magnet synchronous motor lead to rotor imbalance. To deal with this issue, we apply a low-frequency torque compensation algorithm based on control parameterization method. Given the load torque, the control variable is approximated by a piecewise constant function whose magnitudes are taken as decision vectors. The control problem is thus transferred into a mathematical programming problem , which can be solved by the Sequential Quadratic Programming (SQP) algorithm. The simulation results show that, the state variables are close to their target values. Thus, the method avoids chattering and ensures system stability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuan, D.K., Tao, S.G.: AC permanent magnet motor speed regulation system. China Machine Press, Beijing (2011)

    Google Scholar 

  2. Chen, W.X.: Research and implementation of inverter air conditioner compressor drive control system. Central South University, Changsha (2011)

    Google Scholar 

  3. Huang, H., Ma, Y.J., et al.: Method to reduce the speed ripples of single rotator compressor of air conditioner in low frequency. Electric Machines and Control 15(3), 98–102 (2011)

    Google Scholar 

  4. Biegler, L.T., Grossmann, I.E.: Retrospective on optimization. Computers and Chemical Engineering 28(8), 1169–1192 (2004)

    Article  Google Scholar 

  5. Chachuat, B., Mitsos, A., Barton, P.I.: Optimal design and steady-state operation of micro power generation employing fuel cells. Chemical Engineering Science 60(16), 4535–4556 (2005)

    Article  Google Scholar 

  6. Michaei, B., Jesus, R.G.: Optimal control for linear systems with multiple time delays in control input. IEEE Transactions on Automatic Control 51(1), 91–96 (2006)

    Article  Google Scholar 

  7. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, New York (1991)

    MATH  Google Scholar 

  8. Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Computers and Chemical Engineering 8(3), 243–248 (1984)

    Article  Google Scholar 

  9. Luus, R.: Optimal control by dynamic programming using accessible grid points and region contraction. Hungarian Journal of Industrial Chemistry 17(4), 523–543 (1989)

    Google Scholar 

  10. Rajesh, J., Gupta, K., Kusumakar, H.K., et al.: Dynamic optimization of chemical processes using ant colony framework. Computers and Chemical Engineering 25(6), 583–595 (2001)

    Article  Google Scholar 

  11. Wang, L.Y.: Modelling and optimization method based on control parameterization in purification process of zinc hydrometallurgy. Central South University, Changsha (2009)

    Google Scholar 

  12. Chen, N., Shen, X.Y., Gui, W.H., et al.: Control parameterization method of linear systems with multiple time-delays. Control Theory and Applications 28(8), 1099–1104 (2011)

    MATH  Google Scholar 

  13. Chen, B.S.: Electric drive automatic control system (The third version). China Machine Press, Beijing (2003)

    Google Scholar 

  14. Goh, C.J., Teo, K.L.: Control parametrization: A unified approach to optimal control problem with general constraints. Automatica 24(1), 3–18 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schittkowski, K.: NLPQLP: A fortran Implementation of a Sequential Quadratic Programming Algorithm with Distributed and Non-monotone Line Search. University of Bayreuth, Bayreuth (2004)

    Google Scholar 

  16. Schittkowski, K.: NLPQLP: A fortran subroutine solving constrained nonlinear programming problems. Annals of Operations Research 5(4), 485–500 (1986)

    Article  MathSciNet  Google Scholar 

  17. Schittkowski, K., Zillober, C., Zotemantel, R.: Numerical comparison of nonlinear programming algorithm for structural optimization. Structural Optimization 7(1), 1–19 (1994)

    Article  Google Scholar 

  18. Schittkowski, K.: Solving nonlinear programming problems with very many constraints. Optimization 25(2), 179–196 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schittkowski, K.: Parameter estimation in systems of nonlinear equations. Numerische Mathematik 68(1), 129–142 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sirisena, H.R., Chou, F.S.: An efficient algorithm for solving optimal control problems with linear terminal constraints. IEEE Transactions on Automatic Control 21(2), 275–277 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sirisena, H.R.: Computation of optimal controls using a piecewise polynomial parameterization. IEEE Transaction on Automatic Control 18(4), 409–411 (1973)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, N., Fan, Y., Gui, W., Zhang, H., Yu, S. (2013). The Optimization Algorithm of Torque Compensation for PMSM Systems with Periodic-Nonlinear Load. In: Li, K., Li, S., Li, D., Niu, Q. (eds) Intelligent Computing for Sustainable Energy and Environment. ICSEE 2012. Communications in Computer and Information Science, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37105-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37105-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37104-2

  • Online ISBN: 978-3-642-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics