Skip to main content

2-Approximation and Hybrid Genetic Algorithm for Long Chain Design Problem in Process Flexibility

  • Conference paper
Intelligent Computing for Sustainable Energy and Environment (ICSEE 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 355))

Abstract

Long chain flexibility strategy is an effective way to match the supply with the uncertain demand in manufacturing system. However there are few studies on the long chain design problem with nonhomogeneous link costs. This paper first presents a mixed 0-1 LP model and proves that it belongs to NP-complete. Then an approximation algorithm is proposed which includes three steps: 1) solve a relaxed LP; 2) generate a minimum spanning tree; 3) find the optimal local match. Under the quadrangle inequality assumption, we show that it is a 2-approximation algorithm. At last, based on another equivalent reformulation, we embed the 2-approximation algorithm and a 2-opt exchange local search into a hybrid genetic algorithm. By comparison with CPLEX solver, numerical experiments validate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wall, M.: Manufacturing flexibility. Automotive Industries 183(10), 44–45 (2003)

    Google Scholar 

  2. DesMarteau, K.: Leading the way in changing times. Bobbin 41(2), 48–54 (1999)

    Google Scholar 

  3. McCutcheon, D.: Flexible manufacturing: IBM’s Bromont semiconductor packaging plant. Canadian Electronics 19(7), 26 (2004)

    Google Scholar 

  4. Tang, C., Tomlin, B.: The power of flexibility for mitigating supply chain risks. Int. J. Prod. Econ. 116(1), 12–27 (2008)

    Article  Google Scholar 

  5. Jordan, W.C., Graves, S.C.: Principles on the benefits of manufacturing process flexibility. Manage. Sci. 41(4), 577–594 (1995)

    Article  MATH  Google Scholar 

  6. Fine, C.H., Freund, R.M.: Optimal investment in product-flexible manufacturing capacity. Manage. Sci. 36(4), 449–466 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graves, S.C., Tomlin, B.: Process flexibility in supply chains. Manage. Sci. 49(7), 907–919 (2003)

    Article  MATH  Google Scholar 

  8. Gurumurthi, S., Benjaafar, S.: Modeling and analysis of flexible queueing systems. Nav. Res. Log. 51, 755–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopp, W., Tekin, E., Oyen, M.V.: Benefits of skill chaining in serial production lines with cross-trained workers. Manage. Sci. 50(1), 83–98 (2004)

    Article  Google Scholar 

  10. Bassamboo, A., Randhawa, R.S., Mieghem, J.A.V.: Optimal flexibility configurations in newsvendor networks: going beyond chaining and pairing. Manage. Sci. 56(8), 1285–1303 (2010)

    Article  MATH  Google Scholar 

  11. Akşin, O.Z., Karaesmen, F.: Characterizing the performance of process flexibility structures. Oper. Res. Lett. 35(4), 477–484 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chou, M.C., Chua, G.A., Teo, C.P., Zheng, H.: Process flexibility revisited: The graph expander and its applications. Oper. Res. 59(5), 59–94 (2010)

    MathSciNet  Google Scholar 

  13. Chou, M.C., Chua, G.A., Teo, C.P., Zheng, H.: Design for process flexibility: Efficiency of the long chain and sparse structure. Oper. Res. 58(1), 43–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. David, S.L., Wei, Y.: Understanding the performance of the long chain and sparse designs in process flexibility. Oper. Res. (forthcoming)

    Google Scholar 

  15. Miller, C.E., Zemlin, R.A.: Integer programming formulation and traveling salesman problems. J. ACM 7, 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Christos, H.P., Kenneth, S.: Combinatorial optimization. Dover Publications Inc., Mineola (1998)

    MATH  Google Scholar 

  17. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Report, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA, USA (1976)

    Google Scholar 

  18. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  19. Potvin, J.Y.: Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 63(3), 339–370 (1996)

    Article  MATH  Google Scholar 

  20. Homaifar, A., Guan, S., Liepins, G.E.: A new approach on the traveling salesman problem by genetic algorithms. In: The Proceedings of the 5th International Conference on Genetic Algorithms, pp. 460–466. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  21. Zhang, Y.L., Song, S.J., Zhang, H.M., Wu, C., Yin, W.J.: A hybrid genetic algorithm for two-stage multi-item inventory system with stochastic demand. Neural Comput. Applic. 21(6), 1087–1098 (2012)

    Article  Google Scholar 

  22. Nilsson, C.: Heuristics for the traveling salesman problem, http://www.ida.liu.se/~TDDB19/reports_2003/htsp.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Song, S., Wu, C. (2013). 2-Approximation and Hybrid Genetic Algorithm for Long Chain Design Problem in Process Flexibility. In: Li, K., Li, S., Li, D., Niu, Q. (eds) Intelligent Computing for Sustainable Energy and Environment. ICSEE 2012. Communications in Computer and Information Science, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37105-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37105-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37104-2

  • Online ISBN: 978-3-642-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics