Skip to main content

Recursive Model Predictive Control for Fast Varying Dynamic Systems

  • Conference paper
Intelligent Computing for Sustainable Energy and Environment (ICSEE 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 355))

Abstract

A well known drawback of model predictive control (MPC) is that it can only be adopted in slow dynamics, where the sample time is measured in seconds or minutes. The main reason leads to the problem is that the optimization problem included in MPC has to be computed online, and its iterative computational procedure requires long computational time. To shorten computational time, a recursive approach based on Iterative Learning Control (ILC) and Recursive Levenberg Marquardt Algorithm (RLMA) is proposed to solve the optimization problem in MPC. Then, recursive model predictive control (RMPC) is proposed to realize MPC for fast varying dynamic systems. Simulation results show the effectiveness of RMPC compared with conventional MPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: Optimal control of nonlinear systems: a predictive control approach. Automatica 39, 633–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Geyer, T., Papafotiou, G., Morari, M.: Model predictive direct torque control Part I: Concept, algorithm, and analysis. IEEE Transactions on Industrial Electronics 56, 1894–1905 (2009)

    Article  Google Scholar 

  3. Kouro, S., Cortes, P., Vargas, R.: Model predictive control: simple and powerful method to control power converters. IEEE Transactions on Industrial Electronics 56, 1826–1838 (2009)

    Article  Google Scholar 

  4. Mattavelli, P.: An improved deadbeat control for UPS using disturbance observers. IEEE Transactions on Industrial Electronics 52, 206–212 (2005)

    Article  Google Scholar 

  5. Cao, Y.: A formulation of nonlinear model predictive control using automatic differentiation. Journal of Process Control 15, 851–858 (2005)

    Article  Google Scholar 

  6. Ngia, L.S.H., Sjoberg, J.: Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm. IEEE Transactions on Signal Processing 48, 1915–1927 (2000)

    Article  MATH  Google Scholar 

  7. Mishra, S., Topcu, U., Tomizuka, M.: Optimization-Based Constrained Iterative Learning Control. IEEE Transactions on Control Systems Technology 19, 1–9 (2011)

    Article  Google Scholar 

  8. Lee, J.H., Lee, K.S., Kim, W.C.: Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica 36, 641–657 (2000)

    Article  MATH  Google Scholar 

  9. Nelles, O.: Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Moore, K.L.: An observation about monotonic convergence in discrete-time, P-type iterative learning control. In: 2001 IEEE International Symposium on Intelligent Control, pp. 45–49. IEEE Press, New York (2001)

    Google Scholar 

  11. Freeman, C., Tan, Y.: Point-to-point iterative learning control with mixed constraints. In: 2011 American Control Coference, pp. 3657–3662. Conference Publications, San Francisco (2011)

    Google Scholar 

  12. Mishra, S., Topcu, U., Tomizuka, M.: Iterative learning control with saturation constraints. In: 2009 American Control Coference, pp. 943–948. Conference Publications, St. Louis (2009)

    Chapter  Google Scholar 

  13. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Qian, W., Panda, S.K., Xu, J.X.: Torque ripple minimization in PM synchronous motors using iterative learning control. IEEE Transactions on Power Electronics 19, 272–279 (2004)

    Article  Google Scholar 

  15. Mohamed, Y.A.R.I.: Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer. IEEE Transactions on Industrial Electronics 54, 1981–1988 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, D., Zhao, G., Qi, D. (2013). Recursive Model Predictive Control for Fast Varying Dynamic Systems. In: Li, K., Li, S., Li, D., Niu, Q. (eds) Intelligent Computing for Sustainable Energy and Environment. ICSEE 2012. Communications in Computer and Information Science, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37105-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37105-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37104-2

  • Online ISBN: 978-3-642-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics