Second-Order Differential Inclusions

  • Valeri Obukhovskii
  • Pietro Zecca
  • Nguyen Van Loi
  • Sergei Kornev
Part of the Lecture Notes in Mathematics book series (LNM, volume 2076)


Various aspects of the theory of second-order differential inclusions attract the attention of many researchers (see., e.g., [1, 2, 6, 12, 18, 42, 46, 47, 68, 70, 97]). In this chapter we consider the boundary value problem of form
$$\displaystyle{ {u}^{{\prime\prime}}\in Q(u),\;\;u(0) = u(1) = 0, }$$
for second-order differential inclusions which arises naturally from some physical and control problems. Using the method of guiding functions we study the existence of solutions of problem (4.1) in an one-dimensional and in Hilbert spaces.


  1. 1.
    D. Affane, D. Azzam-Laouir, A control problem governed by a second order differential inclusion. Appl. Anal. 88(12), 1677–1690 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation theorems for second order differential inclusions. Int. J. Dyn. Syst. Differ. Equat. 1(2), 85–88 (2007)MathSciNetzbMATHGoogle Scholar
  3. 6.
    J. Andres, L. Malaguti, M. Pavlaçkova, Strictly localized bounding functions for vector second-order boundary value problems. Nonlinear Anal. 71(12), 6019–6028 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 12.
    E.P. Avgerinos, N.S. Papageorgiou, N. Yannakakis, Periodic solutions for second order differential inclusions with nonconvex and unbounded multifunction. Acta Math. Hung. 83(4), 303–314 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 18.
    M. Benchohra, S.K. Ntouyas, Controllability of second-order differential inclusions in Banach spaces with nonlocal conditions. J. Optim. Theor. Appl. 107(3), 559–571 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 32.
    K.C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33(2), 117–146 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 42.
    S. Domachowski, J. Gulgowski, A global bifurcation theorem for convex-valued differential inclusions. Z. Anal. Anwendungen 23(2), 275–292 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 44.
    I. Ekland, R. Temam, Convex Analysis and Variation Problems (North Holland, Amsterdam, 1979)Google Scholar
  9. 46.
    L. Erbe, W. Krawcewicz, Boundary value problems for second order nonlinear differential inclusions, in Qualitative Theory of Differential Equations, Szeged, 1988. Colloq. Math. Soc. Janos Bolyai, vol. 53 (North-Holland, Amsterdam, 1990), pp. 163–171Google Scholar
  10. 47.
    L. Erbe, W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rocky Mt. J. Math. 22(2), 519–539 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 64.
    L. Górniewicz, in Topological Fixed Point Theory of Multivalued Mappings, 2nd edn. Topological Fixed Point Theory and Its Applications, vol. 4 (Springer, Dordrecht, 2006)Google Scholar
  12. 68.
    S.R. Grace, R.P. Agarwal, D. O’Regan, A selection of oscillation criteria for second-order differential inclusions. Appl. Math. Lett. 22(2), 153–158 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 70.
    R. Hakl, P.J. Torres, On periodic solutions of secord-order differential equations with attractive-repulsive singularities. J. Differ. Equat. 248, 111–126 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 72.
    Ph. Hartman, in Ordinary Differential Equations. Corrected reprint of the second (1982) edition (Birkhauser, Boston). Classics in Applied Mathematics, vol. 38 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002)Google Scholar
  15. 80.
    M. Kamenskii, V. Obukhovskii, P. Zecca, in Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applications, vol. 7 (Walter de Gruyter, Berlin, 2001)Google Scholar
  16. 93.
    M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Nauka, Moscow, 1983) (in Russian); English translation (Springer, Berlin, 1989)Google Scholar
  17. 94.
    M.A. Krasnosel’skii, A.V. Pokrovskii, On elliptic equations with discontinuous nonlinearities (in Russian). Dokl. Akad. Nauk 342(6), 731–734 (1995)Google Scholar
  18. 97.
    S. Kyritsi, N. Matzakos, N.S. Papageorgiou, Periodic problems for strongly nonlinear second-order differential inclusions. J. Differ. Equat. 183(2), 279–302 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 116.
    V. Obukhovskii, P. Zecca, V. Zvyagin, On coincidence index for multivalued perturbations of nonlinear Fredholm maps and some applications. Abstr. Appl. Anal. 7(6), 295–322 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 119.
    H. Okochi, On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators. J. Funct. Anal. 91(2), 246–258 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 126.
    L. Schwartz, Cours d’Analyse. 1, 2nd edn. (Hermann, Paris, 1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valeri Obukhovskii
    • 1
  • Pietro Zecca
    • 2
  • Nguyen Van Loi
    • 3
  • Sergei Kornev
    • 1
  1. 1.Department of Physics and MathematicsVoronezh State Pedagogical UniversityVoronezhRussia
  2. 2.Dipartimento di Matematica e Informatica “U Dini”Università di FirenzeFirenzeItaly
  3. 3.Faculty of Fundamental SciencePetroVietNam UniversityBa RiaVietnam

Personalised recommendations