• Valeri Obukhovskii
  • Pietro Zecca
  • Nguyen Van Loi
  • Sergei Kornev
Part of the Lecture Notes in Mathematics book series (LNM, volume 2076)


In this section we recall some notions of the theory of multivalued maps (details can be found, e.g., in [13, 24, 25, 39, 56, 64, 75, 80] and other sources).


Banach Space Topological Vector Space Topological Degree Coincidence Degree Topological Degree Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 11.
    J. Appell, E. De Pascale, H.T. Nguyen, P.P. Zabreiko, Multi-valued superpositions. Dissertationes Math. CCCXLV, pp. 1–97, 1995Google Scholar
  2. 13.
    J.P. Aubin, H. Frankowska, Set-Valued Analysis (Birkhauser, Boston, 1990)zbMATHGoogle Scholar
  3. 22.
    H. Bohnenblust, S. Karlin, On a theorem of Ville, in Contributions in the Theory of Games, vol. 1, ed. by H.W. Kuhn, A.W.Tucker (Princeton University Press, Princeton, 1950), pp. 155–160Google Scholar
  4. 24.
    Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Topological methods in the theory of fixed points of multivalued mappings. Uspekhi Mat. Nauk (Russian) 35(1)(211), 59–126 (1980); English translation: Russ. Math. Surv. 35, 65–143 (1980)Google Scholar
  5. 25.
    Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, 2nd edn. (Librokom, Moscow, 2011) (in Russian)Google Scholar
  6. 26.
    Yu.G. Borisovich, Yu.E. Gliklikh, in On the Lefschetz Number for a Class of Multi-Valued Maps. Seventh Math. Summer School (Katsiveli, 1969), pp. 283–294. Izd. Akad. Nauk Ukrain. SSR (Kiev, 1970) (in Russian)Google Scholar
  7. 29.
    K. Borsuk, in Theory of Retracts. Monografie Mat. vol. 44 (PWN, Warszawa, 1967)Google Scholar
  8. 31.
    C. Castaing, M. Valadier, in Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580 (Springer, Berlin, 1977)Google Scholar
  9. 38.
    K. Deimling, Nonlinear Functional Analysis (Springer, Berlin, 1985)CrossRefzbMATHGoogle Scholar
  10. 39.
    K. Deimling, Multivalued Differential Equations, in De Gruyter Series in Nonlinear Analysis and Applications, vol. 1 (Walter de Gruyter, Berlin, 1992)CrossRefGoogle Scholar
  11. 56.
    A. Fryszkowski, in Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications, vol. 2 (Kluwer, Dordrecht, 2004)Google Scholar
  12. 62.
    R.E. Gaines, J.L. Mawhin, in Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Mathematics, vol. 568 (Springer, Berlin, 1977)Google Scholar
  13. 64.
    L. Górniewicz, in Topological Fixed Point Theory of Multivalued Mappings, 2nd edn. Topological Fixed Point Theory and Its Applications, vol. 4 (Springer, Dordrecht, 2006)Google Scholar
  14. 65.
    L. Górniewicz, A. Granas, W. Kryszewski, On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts. J. Math. Anal. Appl. 161(2), 457–473 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 71.
    J.K. Hale, J. Kato, Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21(1), 11–41 (1978)MathSciNetzbMATHGoogle Scholar
  16. 73.
    Y. Hino, S. Murakami, T. Naito, in Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473 (Springer, Berlin, 1991)Google Scholar
  17. 74.
    M.W. Hirsch, in Differential Topology. Graduate Texts in Mathematics, vol. 33 (Springer, New York, 1994)Google Scholar
  18. 75.
    S. Hu, N.S. Papageorgiou, in Handbook of Multivalued Analysis. Vol. I. Theory. Mathematics and Its Applications, vol. 419 (Kluwer, Dordrecht, 1997)Google Scholar
  19. 76.
    D.M. Hyman, On decreasing sequences of compact absolute retracts. Fund. Math. 64, 91–97 (1969)MathSciNetzbMATHGoogle Scholar
  20. 79.
    J. Jezierski, W. Marzantowicz, in Homotopy Methods in Topological Fixed and Periodic Point Theory. Topological Fixed Point Theory and Applications, vol. 2 (Springer, Dordrecht, 2006)Google Scholar
  21. 80.
    M. Kamenskii, V. Obukhovskii, P. Zecca, in Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applications, vol. 7 (Walter de Gruyter, Berlin, 2001)Google Scholar
  22. 89.
    M.A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostekhizdat, Moscow, 1956) (in Russian); English translation (A Pergamon Press Book The Macmillan Co., New York, 1964)Google Scholar
  23. 95.
    M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis (Nauka, Moscow, 1975); English translation: Grundlehren der Mathematischen Wissenschaften, vol. 263 (Springer, Berlin, 1984)Google Scholar
  24. 111.
    J. Mawhin, in Topological Degree Methods in Nonlinear Boundary Value Problems. Expository Lectures from the CBMS Regional Conference Held at Harvey Mudd College, Claremont, CA, June 9–15, 1977. CBMS Regional Conference Series in Mathematics, vol. 40 (American Mathematical Society, Providence, 1979)Google Scholar
  25. 112.
    A.D. Myshkis, Generalizations of the theorem on a fixed point of a dynamical system inside of a closed trajectory. Mat. Sb. 34(3), 525–540 (1954) (in Russian)MathSciNetGoogle Scholar
  26. 123.
    T. Pruszko, A coincidence degree for L-compact convex-valued mappings and its application to the Picard problem of orientors fields. Bull. Acad. Polon. Sci. Sér. Sci. Math. 27(11–12), 895–902 (1979/1981)Google Scholar
  27. 128.
    E. Tarafdar, S.K. Teo, On the existence of solutions of the equation Lx ∈ Nx and a coincidence degree theory. J. Aust. Math. Soc. Ser. A 28(2), 139–173 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valeri Obukhovskii
    • 1
  • Pietro Zecca
    • 2
  • Nguyen Van Loi
    • 3
  • Sergei Kornev
    • 1
  1. 1.Department of Physics and MathematicsVoronezh State Pedagogical UniversityVoronezhRussia
  2. 2.Dipartimento di Matematica e Informatica “U Dini”Università di FirenzeFirenzeItaly
  3. 3.Faculty of Fundamental SciencePetroVietNam UniversityBa RiaVietnam

Personalised recommendations