New Structures Based on Completions

  • Gilles Bertrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

We propose new axioms relative to combinatorial topology. These axioms are settled in the framework of completions which are inductive properties expressed in a declarative way, and that may be combined.

We introduce several completions for describing dyads. A dyad is a pair of complexes which are, in a certain sense, linked by a “relative topology”.

We first give some basic properties of dyads, then we introduce a second set of axioms for relative dendrites. This allows us to establish a theorem which provides a link between dyads and dendrites, a dendrite is an acyclic complex which may be also described by completions. Thanks to a previous result, this result makes clear the relation between dyads, relative dendrites, and complexes which are acyclic in the sense of homology.

Keywords

Acyclic complexes Combinatorial topology Simplicial Complexes Collapse Completions 

References

  1. 1.
    Whitehead, J.H.C.: Simplicial spaces, nuclei, and m-groups. Proc. London Math. Soc. (2) 45, 243–327 (1939)Google Scholar
  2. 2.
    Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. North-Holland, Amsterdam (1995)Google Scholar
  3. 3.
    Hachimori, M.: Nonconstructible simplicial balls and a way of testing constructibility. Discrete Comp. Geom. 22, 223–230 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4, 297–306 (1984)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Welker, V.: Constructions preserving evasiveness and collapsibility. Discrete Math. 207, 243–255 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Jonsson, J.: Simplicial Complexes of Graphs. Springer (2008)Google Scholar
  7. 7.
    Kalai, G.: Enumeration of Q-acyclic simplicial complexes. Israel Journal of Mathematics 45(4), 337–351 (1983)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kong, T.Y.: Topology-Preserving Deletion of 1’s from 2-, 3- and 4-Dimensional Binary Images. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 3–18. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Transactions on PAMI 31(4), 637–648 (2009)CrossRefGoogle Scholar
  10. 10.
    Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences, Série Math. (345), 363–367 (2007)Google Scholar
  11. 11.
    Rosenfeld, A.: Digital topology. Amer. Math. Monthly, 621–630 (1979)Google Scholar
  12. 12.
    Kovalevsky, V.: Finite topology as applied to image analysis. Comp. Vision Graphics, and Im. Proc. 46, 141–161 (1989)CrossRefGoogle Scholar
  13. 13.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comp. Vision, Graphics and Image Proc. 48, 357–393 (1989)CrossRefGoogle Scholar
  14. 14.
    Bertrand, G.: Completions and simplicial complexes, HAL-00761162 (2012)Google Scholar
  15. 15.
    Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré Conjecture. In: Lectures on Modern Mathematics II, pp. 93–128. Wiley (1964)Google Scholar
  16. 16.
    Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Serra, J.: Image Analysis and Mathematical Morphology, part II: theoretical advances. Academic Press, London (1988)Google Scholar
  18. 18.
    Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 739–782 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gilles Bertrand
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge Equipe A3SI, ESIEE ParisUniversité Paris-EstParisFrance

Personalised recommendations