Generalized Simple Surface Points

  • J. C. Ciria
  • E. Domínguez
  • A. R. Francés
  • A. Quintero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

By using exclusively the customary adjacency relations on ℤ3, we generalize the notion of a simple surface point given by Morgenthaler in the 80s. A new definition of simple surface arises, and we show that simple surfaces coincide with the strong separating family of a certain class of digital surfaces defined by means of continuous analogues that, in turn, contains several families of discrete surfaces in the literature.

Keywords

Unit Cube Surface Point Adjacency Pair Simple Surface Adjacency Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Weak lighting functions and strong 26-surfaces. Theoretical Computer Science 283(1), 29–66 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Malgouyres, R.: Some topological properties of surfaces in ℤ3. Journal of Mathematical Imaging and Vision 11, 207–221 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ciria, J.C., Domínguez, E., Francés, A.R., Quintero, A.: A plate-based definition of discrete surfaces. Pattern Recogn. Lett. 33(11), 1485–1494 (2012)CrossRefGoogle Scholar
  4. 4.
    Ciria, J.C., Domínguez, E., Francés, A.R.: Separation Theorems for Simplicity 26-Surfaces. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 45–56. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Ciria, J.C., Domínguez, E., Francés, A.R., Quintero, A.: Universal Spaces for \((k, \overline{k})-\)Surfaces. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 385–396. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Couprie, M., Bertrand, G.: Simplicity surfaces: a new definition of surfaces in ℤ3. In: SPIE Vision Geometry V, vol. 3454, pp. 40–51 (1998)Google Scholar
  7. 7.
    Kong, T.Y., Roscoe, A.W.: Continuous analogs of axiomatized digital surfaces. Computer Vision, Graphics, and Image Processing 29(1), 60–86 (1985)MATHCrossRefGoogle Scholar
  8. 8.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Information and Control 51(3), 227–247 (1981)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. C. Ciria
    • 1
  • E. Domínguez
    • 1
  • A. R. Francés
    • 1
  • A. Quintero
    • 2
  1. 1.Dpto. de Informática e Ingeniería de Sistemas, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Dpto. de Geometría y Topología, Facultad de MatemáticasUniversidad de SevillaSevillaSpain

Personalised recommendations