Comparison of Point Clouds Acquired by 3D Scanner

  • Natalia Dyshkant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

3D representation of real objects surfaces can be used in applications of computer graphics, medicine, geoinformatics, etc. We consider a problem of measure introducing for comparing of point clouds acquired by different scanning acts and types of scanners and designing of computationally efficient algorithms for their computing. The solution supposes estimation of disparity measure for the fixed position and search of such position that the measure is minimal by solving optimization problem of surface matching. The algorithm for efficient localization of mesh nodes in a Delaunay triangulation is proposed. As the applications several problems of 3D face model analysis were considered.

Keywords

Discrete surface model Delaunay triangulation Euclidean minimum spanning tree computational geometry 3D face image 

References

  1. 1.
    Grise, G., Meyer-Hermann, M.: Surface reconstruction using Delaunay triangulation for applications in life sciences. Computer Physics Communications 182(4), 967–977 (2011)MATHCrossRefGoogle Scholar
  2. 2.
    Szymczak, A., Rossignac, J., King, D.: Piecewise regular meshes: Construction and compression. Graphical Models 64(3-4), 183–198 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: SIGGRAPH Conference Proceedings, pp. 355–361 (2002)Google Scholar
  4. 4.
    Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent Advances in Remeshing of Surfaces. In: Shape Analysis and Structuring: Mathematics and Visualization, pp. 53–82 (2008)Google Scholar
  5. 5.
    Cignoni, P., Roccini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  6. 6.
    Besl, P., McKay, H.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z.: Iterative point matching for registration of freeform curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)CrossRefGoogle Scholar
  8. 8.
    Fan, T., Medioni, G., Nevatia, R.: Recognizing 3D objects using surface descriptions. IEEE PAMI 11(11), 1140–1157 (1989)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image and Vision Computing 10(3), 145–155 (1992)CrossRefGoogle Scholar
  10. 10.
    Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically Stable Sampling for the ICP Algorithm. In: Fourth International Conference on 3D Digital Imaging and Modeling, pp. 260–267 (2003)Google Scholar
  11. 11.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical Software 3(3), 209–226 (1977)MATHCrossRefGoogle Scholar
  12. 12.
    Liu, Y., Rodrigues, M.A.: Geometrical analysis of two sets of 3D correspondence data patterns for the registration of free-form shapes. J. Int. and Rob. Systems 33, 409–436 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Clarkson, K.: A randomized algorithm for closest point queries. SIAM J. Computing 17, 830–847 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Brunnstrom, K., Stoddart, A.J.: Genetic algorithms for free-form surface matching. In: Proc. ICPR, pp. 689–693 (1996)Google Scholar
  15. 15.
    Godin, G., Rioux, M., Baribeau, R.: Three-dimensional registration using range and intensity information. In: Proceedings of the SPIE, vol. 2350, pp. 279–290 (1994)Google Scholar
  16. 16.
    Feldmar, J., Ayache, N., Betting, F.: D-2D projective registration of free-form curves and surfaces. CVIU 65, 403–424 (1997)Google Scholar
  17. 17.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. SIGGRAPH, pp. 311–318 (1994)Google Scholar
  18. 18.
    Eggert, D.W., Larusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications 9(5-6), 272–290 (1997)CrossRefGoogle Scholar
  19. 19.
    Schenk, T.: Digital Photogrammetry, 428 p. Terra-Science, Laurelville (1999)Google Scholar
  20. 20.
    Vaillant, M., Glaunès, J.: Surface Matching via Currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Preparata, F., Shamos, M.: Computational geometry. An introduction, 390 p. Springer-Verlag GmbH (1985)Google Scholar
  22. 22.
    Dyshkant, N.: Measures for comparing discrete models of single-valued surfaces. Moscow University Computational Mathematics and Cybernetics 35(4), 193–200 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Dyshkant, N.: Measures for Surface Comparison on Unstructured Grids with Different Density. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 501–512. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Mestetskiy, L., Tsarik, E.: Delaunay triangulation: recursion without spatial separation. In: GrafiCon 2004: Proc. 14th Int. Conf., CMC MSU, Moscow, pp. 267–270 (2004) (in Russian)Google Scholar
  25. 25.
    Kirkpatrik, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Internat. J. Found. Comput. Sci. 13, 181–199 (2002)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Kostuk, Y.L.: Graphic search with the use of triangulation and cellular partition. Vestnik of Tomsk State University (275), 147–152 (2002) (in Russian)Google Scholar
  28. 28.
    Bose, P., Devroye, L.: Intersections with Random Geometric Objects. Computational Geometry: Theory and Applications 10(3), 139–154 (1998)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Dyshkant, N., Mestetskiy, L.: Estimation of Asymmetry in 3D Face Models. In: International Conference on Computer Vision Theory and Applications (VISAPP 2009), pp. 402–405. INSTICC Press, Lisbon (2009)Google Scholar
  30. 30.
    Artuchin, S.: Quantitative Estimation of Skin Condition Based on 3D Face Scanning. In: 18th International Student, Postgraduate and Young Scientist Conference ”Lomonosov-2011”. Maks Press (2011) (in Russian)Google Scholar
  31. 31.
    Gordeev, D., Dyshkant, N.: Construction of Jaw Movement Model During Chewing Process by 3D image sequence. In: GrafiCon 2009, Proc. 19th Int. Conf. Mosk. Gos. Univ., Moscow, pp. 348–352 (2009) (in Russian)Google Scholar
  32. 32.
    Dzaraev, C., Persin, L., Porochin, A.: Using of 3D Scanners for Diagnostics of Dentoalveolar Anomalies. In: Theoretical and Practical Forum Dental-Review, Moscow (2010) (in Russian)Google Scholar
  33. 33.
    Mestetskiy, L., Dyshkant, N., Gordeev, D., Kumari Sharmila, M., Shekar, B.H.: Surface measures for accuracy evaluation in 3D face reconstruction. Pattern Recognition 45(10), 3583–3589 (2012)CrossRefGoogle Scholar
  34. 34.
    Artec Group Inc. 3D Scanning Technologies, http://www.artec3d.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natalia Dyshkant
    • 1
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations