Persistent Patterns in Integer Discrete Circles

  • André Hoarau
  • Thierry Monteil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)


We study patterns that appear in discrete circles with integer center and radius. As the radius goes to infinity, the patterns get closer to digital straight segments: the notion of tangent words (described in Monteil DGCI 2011) allows to grasp their shape. Unexpectedly, some tangent convex words do not appear infinitely often due to deep arithmetical reasons related to an underlying Pell-Fermat equation. The aim of this paper is to provide a complete characterization of the patterns that appear in integer discrete circles for infinitely many radii.


discrete circle asymptotics digital straight segment tangent word Pell-Fermat equation 


  1. 1.
    Andres, E.: Discrete circles, rings and spheres. Computers & Graphics 18(5), 695–706 (1994)CrossRefGoogle Scholar
  2. 2.
    Andres, E.: Defining Discrete Objects for Polygonalization: The Standard Model. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 313–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical Models and Image Processing 57(6), 453–461 (1995)CrossRefGoogle Scholar
  5. 5.
    Fiorio, C., Toutant, J.-L., Jamet, D.: Discrete Circles: an arithmetical approach with non-constant thickness. In: Vision Geometry XIV, IS&T/SPIE 18th Annual Symposium Electronic Imaging, pp. 60660C01–60660C12. SPIE (January 2006)Google Scholar
  6. 6.
    Freeman, H.: Computer processing of line-drawing images. Computing Surveys 6, 57–97 (1974)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kulpa, Z.: On the properties of discrete circles, rings, and disks. Computer Graphics and Image Processing 10(4), 348–365 (1979)CrossRefGoogle Scholar
  8. 8.
    Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 9.
    Monteil, T.: Another Definition for Digital Tangents. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 95–103. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Monteil, T.: The complexity of tangent words. In: Ambroz, P., Holub, S., Masáková, Z. (eds.) WORDS. EPTCS, vol. 63, pp. 152–157 (2011)Google Scholar
  11. 11.
    Pytheas Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Robertson, J.P.: Solving the generalized Pell equation x 2 − Dy 2 = N (2004), Preprint available at
  13. 13.
    Tougne, L.: Circle Digitization and Cellular Automata. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 283–294. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • André Hoarau
    • 1
  • Thierry Monteil
    • 1
  1. 1.CNRSUniversité Montpellier 2France

Personalised recommendations