Advertisement

Multigrid Convergent Curvature Estimator

  • Christophe Fiorio
  • Christian Mercat
  • Frédéric Rieux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

We propose in this paper an estimator of derivative and curvature of discrete curves. Based on adaptive convolution that preserves contour, we use local geometrical information as the heat kernel to convolve with a discrete curve and give estimation of its geometrical parameters. We recover on regular part of the curve the classical convolution based on gaussian kernel. We study the bounded error of our approach for first and second order derivative and we discuss about the multigrid convergence.

Keywords

Gaussian Kernel Curvature Estimation Derivative Estimation Derivative Estimator Discrete Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion. ii. SIAM Journal on Numerical Analysis 29(3), 845–866 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    An, Y., Shao, C., Wang, X., Li, Z.: Geometric properties estimation from discrete curves using discrete derivatives. Computers & Graphics 35(4), 916–930 (2011)CrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Miguet, S., Tougne, L.: Discrete Curvature Based on Osculating Circle Estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 303–312. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.): DGCI 2008. LNCS, vol. 4992. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Esbelin, H.-A., Malgouyres, R.: Convergence of Binomial-Based Derivative Estimation for C 2 Noisy Discretized Curves. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 57–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Feschet, F., Tougne, L.: Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Fiorio, C., Mercat, C., Rieux, F.: Curvature Estimation for Discrete Curves Based on Auto-adaptive Masks of Convolution. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 47–59. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fiorio, C., Mercat, C., Rieux, F.: Adaptive Discrete Laplace Operator. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 377–386. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Fourey, S., Malgouyres, R.: Normals and curvature estimation for digital surfaces based on convolutions. In: Coeurjolly, et al. (eds.) [4], pp. 287–298Google Scholar
  10. 10.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  11. 11.
    Lindenbaum, M., Fischer, M., Bruckstein, A.M.: On gabor’s contribution to image enhancement. Pattern Recognition 27(1), 1–8 (1994)CrossRefGoogle Scholar
  12. 12.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Coeurjolly, et al. (eds.) [4], pp. 370–379Google Scholar
  13. 13.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  14. 14.
    Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Roussillon, T., Lachaud, J.-O.: Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 43–55. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Roussillon, T., Sivignon, I., Tougne, L.: Measure of circularity for parts of digital boundaries and its fast computation. Pattern Recognition 43(1), 37–46 (2010)zbMATHCrossRefGoogle Scholar
  17. 17.
    Weickert, J.: Anisotropic diffusion in image processing. Kaiserslautern (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christophe Fiorio
    • 1
  • Christian Mercat
    • 3
  • Frédéric Rieux
    • 1
    • 2
  1. 1.LIRMMUniversité Montpellier 2MontpellierFrance
  2. 2.I3MUniversité de Montpellier 2 c.c. 51Montpellier Cedex 5France
  3. 3.S2HEP EA 4148Université Claude Bernard Lyon 1Villeurbanne cedexFrance

Personalised recommendations