Advertisement

Knot Segmentation in Noisy 3D Images of Wood

  • A. Krähenbühl
  • B. Kerautret
  • I. Debled-Rennesson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

Resolving a 3D segmentation problem is a common challenge in the domain of digital medical imaging. In this work, we focus on another original application domain: the 3D images of wood stem. At first sight, the nature of wood image looks easier to segment than classical medical image. However, the presence in the wood of a wet area called sapwood remains an actual challenge to perform an efficient segmentation. This paper introduces a first general solution to perform knot segmentation on wood with sapwood. The main idea of this work is to exploit the simple geometric properties of wood through an original combination of discrete connected component extractions, 2D contour detection and dominant point detection. The final segmentation algorithm is very fast and allows to extract several geometrical knot features.

Keywords

3D segmentation dominant points histogram geometrical features wood knot 

Supplementary material

978-3-642-37067-0_33_MOESMa_ESM.pdf (4.9 mb)
Electronic Supplementary Material(5,060 KB)

References

  1. 1.
    DGtal: Digital geometry tools & algorithms library, http://libdgtal.org
  2. 2.
    Aguilera, C., Sanchez, R., Baradit, E.: Detection of knots using x-ray tomographies and deformable contours with simulated annealing. Wood Res. 53, 57–66 (2008)Google Scholar
  3. 3.
    Alvarez, L., Baumela, L., Márquez-Neila, P., Henríquez, P.: A real time morphological snakes algorithm. Image Processing On Line (2012)Google Scholar
  4. 4.
    Andres, E.: Discrete circles, rings and spheres. Comp. & G. 18(5), 695–706 (1994)CrossRefGoogle Scholar
  5. 5.
    Andreu, J.P., Rinnhofer, A.: Modeling Knot Geometry in Norway Spruce from Industrial CT Images. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 786–791. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A unifying graph-based optimization framework. IEEE PAMI 33(7), 1384–1399 (2010)CrossRefGoogle Scholar
  7. 7.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comp. & Graphics 30(1), 30–36 (2006)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F., Mothe, F.: Knot Detection in X-Ray CT Images of Wood. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 209–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Lachaud, J.O., Taton, B.: Deformable model with adaptive mesh and automated topology changes. In: Proc. 3DIM (2003)Google Scholar
  11. 11.
    Longuetaud, F., Leban, J.M., Mothe, F., Kerrien, E., Berger, M.O.: Automatic detection of pith on ct images of spruce logs. Computers and Electronics in Agriculture 44(2), 107–119 (2004)CrossRefGoogle Scholar
  12. 12.
    Longuetaud, F., Mothe, F., Kerautret, B., Krähenbühl, A., Hory, L., Leban, J.M., Debled-Rennesson, I.: Automatic knot detection and measurements from x-ray ct images of wood: A review and validation of an improved algorithm on softwood samples. Computers and Electronics in Agriculture 85, 77–89 (2012)CrossRefGoogle Scholar
  13. 13.
    Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognition 44(1), 32–44 (2011)zbMATHCrossRefGoogle Scholar
  14. 14.
    Nordmark, U.: Value Recovery and Production Control in the Forestry-wood Chain Using Simulation Technique. Ph.D. thesis, Luleå University of Technology (2005)Google Scholar
  15. 15.
    Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pat. Rec. 44(10-11), 2539–2554 (2011)zbMATHCrossRefGoogle Scholar
  16. 16.
    Reveillès, J.P.: Géométrie discrète, calculs en nombre entiers et algorithmique (Discrete geometry, integers calculus and algorithmics). Ph.D. thesis, Université Louis Pasteur, Strasbourg (1991), thèse d’étatGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Krähenbühl
    • 1
  • B. Kerautret
    • 1
  • I. Debled-Rennesson
    • 1
  1. 1.LORIA, Adagio team, UMR 7503Université de LorraineNancyFrance

Personalised recommendations