Concurrency Relations between Digital Planes

  • Peter Veelaert
  • Maarten Slembrouck
  • Dirk Van Haerenborgh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)


In this paper we examine concurrency relations between planes whose position is not precisely known. The simplest case consists of four planes, where we have to determine whether the four planes can be forced to pass through one common intersection point by moving them slightly within specified limits. We prove that if such a concurrency relation is possible then it can be found in a finite number of steps by a simple geometrical construction. This result remains valid for larger collections of planes, with multiple concurrency relations, provided each pair of relations shares at most one plane, and the relations do not form cycles.


Dual Space Support Point Support Plane Parameter Point Primal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    He, P., Edalat, A.: Visual hull from imprecise polyhedral scene. In: Goesele, M., Matsushita, Y., Sagawa, R., Yang, R. (eds.) 3DIMPVT, pp. 164–171. IEEE (2011)Google Scholar
  2. 2.
    Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)CrossRefGoogle Scholar
  3. 3.
    Petitjean, S.: A computational geometric approach to visual hulls. Int. J. Comput. Geometry Appl. 8(4), 407–436 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Labatut, P., Pons, J.P., Keriven, R.: Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts. In: ICCV, pp. 1–8. IEEE (2007)Google Scholar
  5. 5.
    Kim, H., Sakamoto, R., Kitahara, I., Toriyama, T., Kogure, K.: Robust Foreground Extraction Technique Using Gaussian Family Model and Multiple Thresholds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 758–768. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27(7), 773–780 (2006)CrossRefGoogle Scholar
  7. 7.
    Kim, C.E.: Three-dimensional digital planes. IEEE Trans. Pattern Anal. Machine Intell. 6, 639–645 (1984)zbMATHCrossRefGoogle Scholar
  8. 8.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59(5), 302–309 (1997)CrossRefGoogle Scholar
  9. 9.
    Jamet, D., Toutant, J.L.: Minimal arithmetic thickness connecting discrete planes. Discrete Applied Mathematics 157(3), 500–509 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Veelaert, P., Heyvaert, M.: Reconstruction of Concurrent Lines from Leaning Points. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 182–193. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital plane preimage structure. Discrete Applied Mathematics 151(1-3), 78–92 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Veelaert, P.: Algorithms that measure parallelism and concurrency of lines in digital images. In: Proc. of SPIE’s Conference on Vision Geometry VIII, Denver. SPIE, pp. 69–79 (1999)Google Scholar
  13. 13.
    Veelaert, P.: Concurrency of Line Segments in Uncertain Geometry. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 289–300. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Veelaert
    • 1
  • Maarten Slembrouck
    • 1
  • Dirk Van Haerenborgh
    • 1
  1. 1.Ghent UniversityGhentBelgium

Personalised recommendations