Walking in the Farey Fan to Compute the Characteristics of a Discrete Straight Line Subsegment

  • Isabelle Sivignon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

Given a Digital Straight Line (DSL) of known characteristics (a,b,μ), we address the problem of computing the characteristics of any of its subsegments. We propose a new algorithm as a smart walk in the so called Farey Fan. We take profit of the fact that the Farey Fan of order n represents in a certain way all the digital segments of length n. The computation of the characteristics of a DSL subsegment is then equivalent to the localization of a point in the Farey Fan. Using fine arithmetical properties of the fan, we design a fast algorithm of theoretical complexity \(\mathcal{O}(\log(n))\) where n is the length of the subsegment. Experiments show that our algorithm is faster than the one previously proposed by Said and Lachaud in [15,14] for “short” segments.

Keywords

Digital geometry Digital straight segment recognition Farey fan 

References

  1. 1.
    DGtal: Digital Geometry Tools and Algorithms Library, http://libdgtal.org
  2. 2.
    Berenstein, C., Lavine, D.: On the number of digital straight line segments. IEEE Trans. on Pattern Anal. and Mach. Intell. 10(6), 880–887 (1988)MATHCrossRefGoogle Scholar
  3. 3.
    Charrier, E., Buzer, L.: Approximating a real number by a rational number with a limited denominator: A geometric approach. Discrete Applied Mathematics 157(16), 3473–3484 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.-M.: On digital plane preimage structure. Discrete Applied Mathematics 151(1-3), 78–92 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of digital curves. Inter. Jour. of Pattern Recog. and Art. Intell. 9(6), 635–662 (1995)CrossRefGoogle Scholar
  6. 6.
    Dorst, L., Smeulders, A.N.M.: Discrete representation of straight lines. IEEE Trans. on Pattern Anal. and Mach. Intell. 6(4), 450–463 (1984)MATHCrossRefGoogle Scholar
  7. 7.
    Dorst, L., Smeulders, A.W.: Discrete straight line segments: Parameters, primitives and properties. In: Vision Geometry. Contemporary Mathematics, pp. 45–62. Am. Math. Soc. (1991)Google Scholar
  8. 8.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford Society (1989)Google Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital geometry - geometric methods for digital picture analysis. Morgan Kaufmann (2004)Google Scholar
  10. 10.
    Koplowitz, J., Lindenbaum, M., Bruckstein, A.: The number of digital straight lines on an n ×n grid. IEEE Trans. on Info. Theory 36(1), 192–197 (1990)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kovalevsky, V.: New definition and fast recognition of digital straight segments and arcs. In: Inter. Conf. on Patt. Anal. and Mach. Intell., vol. 2, pp. 31–34 (1990)Google Scholar
  12. 12.
    McIlroy, M.D.: A Note on Discrete Representation of Lines. AT&T Technical Journal 64(2), 481–490 (1985)Google Scholar
  13. 13.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: CGAL - 2D Arrangements, http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/Arrangement_2/Chapter_main.html
  14. 14.
    Said, M., Lachaud, J.-O., Feschet, F.: Multiscale Discrete Geometry. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 118–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Said, M., Lachaud, J.-O.: Computing the Characteristics of a SubSegment of a Digital Straight Line in Logarithmic Time. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 320–332. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Sivignon, I., Dupont, F., Chassery, J.M.: Digital intersections: minimal carrier, connectiviy and periodicity properties. Graphical Models 66(4), 226–244 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Troesch, A.: Interprétation géométrique de l’algorithme d’euclide et reconnaissance de segments. Theor. Comput. Sci. 115(2), 291–319 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Isabelle Sivignon
    • 1
  1. 1.CNRS, UMR 5216gipsa-labFrance

Personalised recommendations